Индукционный нагрев, основные принципы и технологии. Закалка металлов токами высокой частоты

ПКФ «Цвет» специализируется на оказании услуг металлообработки, у нас большой опыт работы в этом направлении. Мы оказываем различные услуги упомянутого спектра, а закалка ТВЧ входит в их число. Эта услуга пользуется широким спросом на территории РФ. Компания обладает всем необходимым оборудованием для решения рассматриваемой задачи. Сотрудничество с нами будет выгодным, удобным и комфортным.

Основные характеристики

Закалка стали ТВЧ позволяет придать материалу достаточный уровень прочности. Данная процедура считается самой распространенной. Подобной обработке подвергают не только саму деталь, но и отдельные части заготовки, которые должны обладать определенными показателями прочности. Применение упомянутой процедуры существенно продлевает срок эксплуатации различных деталей.

Закалка металла ТВЧ основана на применении электротока, проходящего по поверхности детали, последняя находится в индукторе. В результате обработки деталь нагревается на определенную глубину, остальная часть изделия не нагревается. Данный метод имеет множество преимуществ, так как применения данной технологии дает возможность контролировать режим зажим закалки, заменить легированную сталь на углеродистую.

Обработанные заготовки приобретают высокие прочностные характеристики, в ходе выполнения задачи не возникает закалочных трещин. Обрабатываемая поверхность не окисляется и не обезуглероживается. Закалка токами высокой частоты выполняется в короткий срок, поскольку отсутствует необходимость нагревать заготовку целиком. Компания применяет высококачественное оборудования для выполнения обработки рассматриваемого вида. Мы осуществляем закалку ТВЧ на высоком профессиональном уровне.

Наши преимущества

Услуга закалка ТВЧ — одна из основных специализаций ПКФ «Цвет», мы предоставляем ее на выгодных условиях. Все работы выполняются на современном оборудовании, с применением самых передовых технологий. Все это делает сотрудничество с нами удобным и комфортным.

Чтобы оформить заказ позвоните нам по телефону. Сотрудники фирмы быстро зарегистрируют вашу заявку, они ответят на все интересующие вас вопросы. Компания предоставляет услуги доставки готовой продукции. Транспортировка изделий выполняется по всей территории Российской Федерации.

В гидромеханических системах, устройствах и узлах чаще всего используются детали, которые работают на трение, сдавливание, скрутку. Именно поэтому основное требование к ним – достаточная твердость их поверхности. Для получения необходимых характеристик детали, поверхность закаляется током высокой частоты (ТВЧ).

В процессе применения закалка ТВЧ показала себя как экономный и высокоэффективный способ термической обработки поверхности металлических деталей, который придает дополнительную износостойкость и высокое качество обработанным элементам.

Нагрев токами ВЧ основан на явлении, при котором вследствие прохождения переменного высокочастотного тока по индуктору (спиральный элемент, выполненный из медных трубок) вокруг него формируется магнитное поле, создающее в металлической детали вихревые токи, которые и вызывают нагрев закаливаемого изделия. Находясь исключительно на поверхности детали, они позволяют нагреть ее на определенную регулируемую глубину.

Закалка ТВЧ металлических поверхностей имеет отличие от стандартной полной закалки, которое заключается в повышенной температуре нагрева. Это объясняется двумя факторами. Первый из них – при высокой скорости нагрева (когда перлит переходит в аустенит) уровень температуры критических точек повышается. А второй – чем быстрее проходит переход температур, тем быстрее совершается превращение металлической поверхности, ведь оно должно произойти за минимальное время.

Стоит сказать, несмотря на то, что при использовании высокочастотной закалки вызывается нагрев больше обычного, перегрева металла не случается. Такое явление объясняется тем, что зерно в стальной детали не успевает увеличиться, благодаря минимальному времени высокочастотного нагрева. К тому же, из-за того, что уровень нагрева выше и охлаждение интенсивнее, твердость заготовки после ее закалки ТВЧ вырастает приблизительно на 2-3 HRC. А это гарантирует высочайшую прочность и надежность поверхности детали.

Вместе с тем, есть дополнительный немаловажный фактор, который обеспечивает повышение износостойкости деталей при эксплуатации. Благодаря созданию мартенситной структуры, на верхней части детали образовываются сжимающие напряжения. Действие таких напряжений проявляется в высшей мере при небольшой глубине закаленного слоя.

Применяемые для закалки ТВЧ установки, материалы и вспомогательные средства

Полностью автоматический комплекс высокочастотной закалки включает в себя закалочный станок и ТВЧ установки (крепежные системы механического типа, узлы поворота детали вокруг своей оси, движения индуктора по направлению заготовки, насосов, подающих и откачивающих жидкость или газ для охлаждения, электромагнитных клапанов переключения рабочих жидкостей или газов (вода/эмульсия/газ)).

ТВЧ станок позволяет перемещать индуктор по всей высоте заготовки, а также вращать заготовку на разных уровнях скорости, регулировать выходной ток на индукторе, а это дает возможность выбрать правильный режим процесса закалки и получить равномерно твердую поверхность заготовки.

Принципиальная схема индукционной установки ТВЧ для самостоятельной сборки была приведена .

Индукционную высокочастотную закалку можно охарактеризовать двумя основными параметрами: степенью твердости и глубиной закалки поверхности. Технические параметры выпускаемых на производстве индукционных установок определяются мощностью и частотой работы. Для создания закаленного слоя применяют индукционные нагревающие устройства мощностью 40-300 кВА при показателях частоты в 20-40 килогерц либо 40-70 килогерц. Если необходимо провести закалку слоев, которые находятся глубже, стоит применять показатели частот от 6 до 20 килогерц.

Диапазон частот выбирается, исходя из номенклатуры марок стали, а также уровня глубины закаленной поверхности изделия. Существует огромный ассортимент комплектаций индукционных установок, что помогает выбрать рациональный вариант для конкретного технологического процесса.

Технические параметры автоматических станков для закалки определяются габаритными размерами используемых деталей для закалки по высоте (от 50 до 250 сантиметров), по диаметру (от 1 до 50 сантиметров) и массе (до 0,5 т, до 1т, до 2т). Комплексы для закалки, высота которых составляет 1500 мм и больше, оснащены электронно-механической системой зажима детали с определенным усилием.

Высокочастотная закалка деталей осуществляется в двух режимах. В первом каждое устройство индивидуально подключается оператором, а во втором – происходит без его вмешательств. В качестве среды закалки обычно выбирают воду, инертные газы или полимерные составы, обладающие свойствами по теплопроводности, близкими к маслу. Среда закалки выбирается в зависимости от требуемых параметров готового изделия.

Технология закалки ТВЧ

Для деталей или поверхностей плоской формы маленького диаметра используется высокочастотная закалка стационарного типа. Для успешной работы расположение нагревателя и детали не меняется.

При применении непрерывно-последовательной ТВЧ закалки, которая чаще всего используется при обработке плоских или цилиндрообразных деталей и поверхностей, одна из составляющих системы должна перемещаться. В таком случае либо нагревающее устройство перемещается по направлению к детали, либо деталь движется под нагревающим аппаратом.

Для нагрева исключительно цилиндрообразных деталей небольшого размера, прокручивающихся единожды, применяют непрерывно-последовательную высокочастотную закалку тангенциального типа.

Структура металла зубца шестерни, после закалки ТВЧ методом

После совершения высокочастотна нагрева изделия совершают его низкий отпуск при температуре 160-200°С. Это позволяет увеличить износостойкость поверхности изделия. Отпуски совершаются в электропечах. Еще один вариант – совершение самоотпуска. Для этого необходимо чуть раньше отключить устройство, подающее воду, что способствует неполному охлаждению. Деталь сохраняет высокую температуру, которая нагревает закаленный слой до температуры низкого отпуска.

После совершения закалки также применяется электроотпуск, при котором нагрев осуществляется при помощи ВЧ установки. Для достижения желаемого результата нагрев производится с более низкой скоростью и более глубоко, чем при поверхностной закалке. Необходимый режим нагрева можно определить методом подбора.

Для улучшения механических параметров сердцевины и общего показателя износостойкости заготовки нужно провести нормализацию и объемную закалку с высоким отпуском непосредственно перед поверхностной закалкой ТВЧ.

Сферы применения закалки ТВЧ

Закалка ТВЧ используется в ряде технологических процессов изготовления следующих деталей:

  • валов, осей и пальцев;
  • шестеренок, зубчатых колес и венцов;
  • зубьев или впадин;
  • щелей и внутренних частей деталей;
  • крановых колес и шкивов.

Наиболее часто высокочастотную закалку применяют для деталей, которые состоят из углеродистой стали, содержащей полпроцента углерода. Подобные изделия приобретают высокую твердость после закалки. Если наличие углерода меньше вышеуказанного, подобная твердость уже недостижима, а при большем проценте скорее всего возникнут трещины при охлаждении водяным душем.

В большинстве ситуаций закалка токами высокой частоты позволяет заменить стали, прошедшие легирование, более недорогими – углеродистыми. Это можно пояснить тем, что такие достоинства сталей с легирующими добавками, как глубокая прокаливаемость и меньшее искажение поверхностного слоя, для некоторых изделий теряют значение. При высокочастотной закалке металл становится более прочным, а его износостойкость возрастает. Точно так же, как углеродистые используются хромистые, хромоникелевые, хромокремнистые и многие другие виды сталей с низким процентом легирующих добавок.

Преимущества и недостатки метода

Преимущества закалки токами ВЧ:

  • полностью автоматический процесс;
  • работа с изделиями любых форм;
  • отсутствие нагара;
  • минимальная деформация;
  • вариативность уровня глубины закаленной поверхности;
  • индивидуально определяемые параметры закаленного слоя.

Среди недостатков можно выделить:

  • потребность в создании специального индуктора для разных форм деталей;
  • трудности в накладке уровней нагрева и охлаждения;
  • высокая стоимость оборудования.

Возможность использования закалки токами ВЧ в индивидуальном производстве маловероятна, но в массовом потоке, например, при изготовлении коленчатых валов, шестеренок, втулок, шпинделей, валов холодной прокатки и др., закалка поверхностей ТВЧ приобретает все более широкое применение.

Индукционный нагрев (Induction Heating) - метод бесконтактного нагрева токами высокой частоты (англ. RFH - radio-frequency heating, нагрев волнами радиочастотного диапазона) электропроводящих материалов.

Описание метода.

Индукционный нагрев - это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно - это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием - этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Применение:
Сверхчистая бесконтактная плавка, пайка и сварка металла.
Получение опытных образцов сплавов.
Гибка и термообработка деталей машин.
Ювелирное дело.
Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
Поверхностная закалка.
Закалка и термообработка деталей сложной формы.
Обеззараживание медицинского инструмента.

Преимущества.

Высокоскоростной разогрев или плавление любого электропроводящего материала.

Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.

Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева - эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал - металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.

За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе - так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).

Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.

Удобство эксплуатации за счёт небольшого размера индуктора.

Индуктор можно изготовить особой формы - это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.

Легко провести местный и избирательный нагрев.

Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).

Лёгкая автоматизация оборудования - циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.

Установки индукционного нагрева:

На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах.

Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.

Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:
- повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
- применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.

Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.

Схема генератора может быть в принципе любой (мультивибратор, RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.

Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.

Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.

На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли, генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.

Недостатки трёх точки:

Низкий кпд (менее 40 % при применении лампы).

Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являются фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.

При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.

При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.

Под руководством Бабата, Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.

Современные твч-генераторы - это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать

А) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.

Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания - заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается - это может привести к "разносу" генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).

Замечания.

Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).

Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).

При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.

При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка - дуги).

Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов.
Параллельный колебательный контур – резонанс токов.
В этом случае на катушке и на конденсаторе напряжение такое же, как у генератора. При резонансе, сопротивление контура между точками разветвления становится максимальным, а ток (I общ) через сопротивление нагрузки Rн будет минимальным (ток внутри контура I-1л и I-2с больше чем ток генератора).

В идеальном случае полное сопротивление контура равно бесконечности - схема не потребляет тока от источника. При изменение частоты генератора в любую сторону от резонансной частоты полное сопротивление контура уменьшается и линейный ток (I общ) возрастает.

Последовательный колебательный контур – резонанс напряжений.

Главной чертой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. (ZL + ZC – минимум). При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает.
Вывод:
В параллельном контуре при резонансе ток через выводы контура равен 0, а напряжение максимально.
В последовательном контуре наоборот - напряжение стремится к нулю, а ток максимален.

Статья взята с сайта http://dic.academic.ru/ и переработана в более понятный для читателя текст, компанией ООО «Проминдуктор».

По договоренности возможна термическая обработка и закалка металлических и стальных деталей с большими чем в данной таблице габаритами.

Термическая обработка (термообработка стали) металлов и сплавов в Москве – это услуга, которую предоставляет своим заказчикам наш завод. У нас есть все необходимое оборудование, за которым работают квалифицированные специалисты. Все заказы мы выполняем качественно и в установленные сроки. Так же мы принимаем и выполняем заказы на термообработку сталей и ТВЧ поступающие к нам и из других регионов России.

Основные виды термической обработки стали


Отжиг I рода:

Отжиг I рода диффузионный (гомогенизация) - Быстрый нагрев до t 1423 К, длительная выдержка и последующее медленное охлаждение. Происходит Выравнивание химической неоднородности материала в крупных фасонных отливках из легированной стали

Отжиг I рода рекристаллизационный - Нагрев до температуры 873-973 К, длительная выдержка и последующее медленное охлаждение. Происходит Уменьшение твердости и увеличение пластичности после холодного деформирования (обработка является межоперационной)

Отжиг I рода уменьшающий напряжения - Нагрев до температуры 473-673 К и последующее медленное охлаждение. Происходит Снятие остаточных напряжений после литья, сварки, пластической деформации или механической обработки.

Отжиг II рода:

Отжиг II рода полный - Нагрев до температуры выше точки Ас3 на 20-30 К, выдержка и последующее охлаждение. Происходит Снижение твердости, улучшение обрабатываемости, снятие внутренних напряжений в доэвтектоидной и эвтектоидной сталях перед закалкой (см.примечание к таблице)

Отжиг II рода неполный - Нагрев до температуры между точками Ac1 и Ас3, выдержка и последующее охлаждение. Происходит Снижение твердости, улучшение обрабатываемости, снятие внутренних напряжений в заэвтектоидной стали перед закалкой

Отжиг II рода изотермический - Нагрев до температуры на 30-50 К выше точки Ас3 (для доэвтектоидной стали) или выше точки Ас1 (для заэвтектоидной стали), выдержка и последующее ступенчатое охлаждение. Происходит Ускоренная обработка небольших прокатных изделий или поковок из легированной и высокоуглеродистой сталей с целью снижения твердости, улучшения обрабатываемости, снятия внутренних напряжений

Отжиг II рода сфероидизирующий - Нагрев до температуры выше точки Ас1 на 10-25 К, выдержка и после-дующее ступенчатое охлаждение. Происходит Уменьшение твердости, улучшение обрабатываемости, снятие внутренних напряжений в инструментальной стали перед закалкой, повышение пластичности низколегированной и среднеуглеродистой сталей перед холодным деформированием

Отжиг II рода светлый - Нагрев в контролируемой среде до температуры выше точки Ас3 на 20-30 К, выдержка и последующее охлаждение в контролируемой среде. Происходит Защита поверхности стали от окисления и обезуглероживания

Отжиг II рода Нормализация (нормализационный отжиг) - Нагрев до температуры выше точки Ас3 на 30-50 К, выдержка и последующее охлаждение на спокойном воздухе. Происходит Исправление структуры герегретой стали, снятие внутренних напряжений в деталях из конструкционной стали и улучшение их обрабатываемости, увеличение глубины прокаливаемости инструм. стали перед закалкой

Закалка:

Закалка непрерывная полная - Нагрев до температуры выше точки Ас3 на 30-50 К, выдержка и последующее резкое охлаждение. Происходит Получение (в сочетании с отпуском) высокой твердости и износостойкости деталей из доэвтектоидной и эвтектоидной сталей

Закалка неполная - Нагрев до температуры между точками Ас1 и Ас3, выдержка и последующее резкое охлаждение. Происходит Получение (в сочетании с отпуском) высокой твердости и износостойкости деталей из заэвтектоидной стали

Закалка прерывистая - Нагрев до t выше точки Ас3 на 30-50 К (для доэвтектоидной и эвтектоидной сталей) или между точками Ас1 и Ас3 (для заэвтектоидной стали), выдержка и последующее охлаждение в воде, а затем в масле. Происходит Уменьшение остаточных напряжений и деформаций в деталях из высокоуглеродистой инструментальной стали

Закалка изотермическая - Нагрев до температуры выше точки Ас3 на 30-50 К, выдержка и последующее охлаждение в расплавленных солях, а затем на воздухе. Происходит Получение минимальной деформации (коробления), повышение пластичности, предела выносливости и сопротивления изгибу деталей из легированной инструментальной стали

Закалка ступенчатая - То же (отличается от изотермической закалки меньшим временем пребывания детали в охлаждающей среде). Происходит Уменьшение напряжений, деформаций и предупреждение образования трещин в мелком инструменте из углеродистой инструментальной стали, а также в более крупном инструменте из легированной инструментальной и быстрорежущей стали

Закалка поверхностная - Нагрев электрическим током или газовым пламенем поверхностного слоя изделия до закалочной t с последующим быстрым охлаждением прогретого слоя. Происходит Повышение поверхностной твердости на определенную глубину, износоустойчивость и повышенная выносливость деталей машин и инструментов

Закалка с самоотпуском - Нагрев до температуры выше точки Ас3 на 30-50 К, выдержка и последующее неполное охлаждение. Сохранившееся внутри детали тепло обеспечивает отпуск закаленного наружного слояМестное упрочнение ударного инструмента несложной конфигурации из углеродистой инструментальной стали, а также при индукционном нагреве

Закалка с обработкой холодом - Глубокое охлаждение после закалки до температуры 253-193 К. Происходит Повышение твердости и получение стабильных размеров деталей из высоколегированной стали

Закалка с подстуживанием - Нагретые детали перед погружением в охлаждающую среду некоторое время охлаждаются на воздухе или выдерживаются в термостате с пониженной t. Происходит Сокращение цикла термической обработки стали (применяется обычно после цементации).

Закалка светлая - Нагрев в контролируемой среде до температуры выше точки Ас3 на 20-30 К, выдержка и последующее охлаждение в контролируемой среде. Происходит Защита от окисления и обезуглероживания сложных деталей пресс-форм, штампов и приспособлений, не подвергаемых шлифованию

Отпуск низкий - Нагрев в интервале температуры 423-523 К и последующее ускоренное охлаждение. Происходит Снятие внутренних напряжений и уменьшение хрупкости режущего и мерительного инструмента после поверхностной закалки; для цементируемых деталей после закалки

Отпуск средний - Нагрев в интервале t = 623-773 К и последующее медленное или ускоренное охлаждение. Происходит Повышение предела упругости пружин, рессор и других упругих элементов

Отпуск высокий - Нагрев в интервале температур 773-953 К и последующее медленное или быстрое охлаждение. Происходит Обеспечение высокой пластичности деталей из конструкционной стали, как правило, при термическом улучшении

Термическое улучшение - Закалка и последующий высокий отпуск. Происходит Полное снятие остаточных напряжений. Обеспечение сочетания высокой прочности и пластичности при окончательной термической обработке деталей из конструкционной стали, работающих при ударных и вибрационных нагрузках

Термомеханическая обработка - Нагрев, быстрое охлаждение до 673-773 К, многократное пластическое деформирование, закалка и отпуск. Происходит Обеспечение для проката и деталей простой формы, не подвергаемых сварке, повышенной прочности по сравнению с прочностью, полученной при обычной термической обработке

Старение - Нагрев и длительная выдержка при повышенной температуре. Происходит Стабилизация размеров деталей и инструментов

Цементация - Насыщение поверхностного слоя мягкой стали углеродом (науглероживание). Сопровождается последующей закалкой с низким отпуском. Глубина цементированного слоя составляет 0,5-2 мм. Происходит Придание изделию высокой поверхностной твердости с сохранением вязкой сердцевины. Цементации подвергаются углеродистые или легированные стали с содержанием углерода: для мелких и средних изделий 0,08-0,15 %, для более крупных 0,15-0,5%. Цементации подвергаются зубчатые колеса, поршневые пальцы и др.

Цианирование - Термохимическая обработка стальных изделий в растворе цианистых солей при температуре 820. Происходит Насыщения поверхностного слоя стали углеродом и азотом (слой 0,15-0,3 мм.) Цианированию подвергаются малоуглеродистые стали, вследствие чего наряду с твердой поверхностью изделия обладают вязкой сердцевиной. Такие изделия отличаются высоким сопротивлением износу и стойкостью против ударных нагрузок.

Азотирование (нитрирование) - Насыщение азотом поверхностного слоя стальных изделий на глубину 0,2-0,3 мм. Происходит Придание высокой поверхностной твердости, повышенного сопротивления истиранию и коррозии. Азотированию подвергаются калибры, шестерни, шейки валов и др.

Обработка холодом - Охлаждение после закалки до температуры ниже нуля. Происходит Изменение внутренней структуры закаливаемых сталей. Применяется для инструментальных сталей, цементируемых изделий, некоторых высоколегированных сталей.

МЕТАЛЛОВ ТЕРМИЧЕСКАЯ ОБРАБОТКА (ТЕРМООБРАБОТКА), определенный временной цикл нагрева и охлаждения, которому подвергают металлы для изменения их физических свойств. Термообработка в обычном смысле этого термина проводится при температурах, не достигающих точки плавления. Процессы плавления и литья, оказывающие существенное влияние на свойства металла, в это понятие не включаются. Изменения физических свойств, вызываемые термической обработкой, обусловлены изменениями внутренней структуры и химических соотношений, происходящими в твердом материале. Циклы термической обработки представляют собой различные комбинации нагрева, выдерживания при определенной температуре и быстрого или медленного охлаждения, соответствующие тем структурным и химическим изменениям, которые требуется вызвать.

Зернистая структура металлов. Всякий металл обычно состоит из множества соприкасающихся друг с другом кристаллов (называемых зернами), как правило, имеющих микроскопические размеры, но иногда и видимых простым глазом. Внутри каждого зерна атомы расположены так, что образуют правильную трехмерную геометрическую решетку. Тип решетки, называемый кристаллической структурой, является характеристикой материала и может быть определен методами рентгеноструктурного анализа. Правильное расположение атомов сохраняется в пределах всего зерна, если не считать небольших нарушений, таких, как отдельные узлы решетки, случайно оказавшиеся вакантными. Все зерна имеют одинаковую кристаллическую структуру, но, как правило, по-разному ориентированы в пространстве. Поэтому на границе двух зерен атомы всегда менее упорядочены, чем внутри них. Этим объясняется, в частности, то, что границы зерен легче поддаются травлению химическими реагентами. На полированной плоской поверхности металла, обработанной подходящим травителем, обычно выявляется четкая картина границ зерен. Физические свойства материала определяются свойствами отдельных зерен, их воздействием друг на друга и свойствами границ зерен. Свойства металлического материала существенным образом зависят от размеров, формы и ориентации зерен, и цель термической обработки состоит в том, чтобы управлять этими факторами.

Атомные процессы при термической обработке. При повышении температуры твердого кристаллического материала его атомам становится все легче переходить из одного узла кристаллической решетки в другой. Именно на этой диффузии атомов и основана термическая обработка. Наиболее эффективный механизм движения атомов в кристаллической решетке можно представить себе как движение вакантных узлов решетки, которые всегда имеются в любом кристалле. При повышенных температурах благодаря увеличению скорости диффузии ускоряется процесс перехода неравновесной структуры вещества в равновесную. Температура, при которой заметно повышается скорость диффузии, неодинакова для разных металлов. Она обычно выше для металлов с высокой температурой плавления. В вольфраме с его температурой плавления, равной 3387 C, рекристаллизация не происходит даже при красном калении, тогда как термическую обработку алюминиевых сплавов, плавящихся при низких температурах, в некоторых случаях оказывается возможным проводить при комнатной температуре.

Во многих случаях термической обработкой предусматривается очень быстрое охлаждение, называемое закалкой, цель которого сохранить структуру, образовавшуюся при повышенной температуре. Хотя, строго говоря, такую структуру нельзя считать термодинамически устойчивой при комнатной температуре, практически она вполне устойчива благодаря низкой скорости диффузии. Очень многие полезные сплавы обладают подобной "метастабильной" структурой.

Изменения, вызываемые термической обработкой, могут быть двух основных видов. Во-первых, и в чистых металлах, и в сплавах возможны изменения, затрагивающие только физическую структуру. Это могут быть изменения напряженного состояния материала, изменения размеров, формы, кристаллической структуры и ориентации его кристаллических зерен. Во-вторых, изменяться может и химическая структура металла. Это может выражаться в сглаживании неоднородностей состава и образовании выделений другой фазы, во взаимодействии с окружающей атмосферой, созданной для очистки металла или придания ему заданных поверхностных свойств. Изменения того и другого вида могут происходить одновременно.

Снятие напряжений. Деформация в холодном состоянии повышает твердость и хрупкость большинства металлов. Иногда такое "деформационное упрочнение" желательно. Цветным металлам и их сплавам обычно придают ту или иную степень твердости холодной прокаткой. Малоуглеродистые стали тоже часто упрочняют холодным деформированием. Высокоуглеродистые стали, доведенные холодной прокаткой или холодным волочением до повышенной прочности, необходимой, например, для изготовления пружин, обычно подвергают отжигу для снятия напряжений нагревают до сравнительно низкой температуры, при которой материал остается почти столь же твердым, как и раньше, но в нем исчезают неоднородности распределения внутренних напряжений. Благодаря этому ослабевает тенденция к растрескиванию, особенно в коррозионных средах. Такое снятие напряжений происходит, как правило, за счет локального пластического течения в материале, не приводящего к изменениям общей структуры.

Рекристаллизация. При разных методах обработки металлов давлением нередко требуется сильно изменять форму заготовки. Если формообразование должно проводиться в холодном состоянии (что часто диктуется практическими соображениями), то приходится разбивать процесс на ряд ступеней, в промежутках между ними проводя рекристаллизацию. После первой ступени деформации, когда материал упрочнен настолько, что дальнейшее деформирование может привести к разрушению, заготовку нагревают до температуры, превышающей температуру отжига для снятия напряжений, и выдерживают для рекристаллизации. Благодаря быстрой диффузии при такой температуре за счет атомной перестройки возникает совершенно новая структура. Внутри зеренной структуры деформированного материала начинают расти новые зерна, которые с течением времени полностью ее заменяют. Сначала образуются мелкие новые зерна в местах наибольшего нарушения старой структуры, а именно на старых границах зерен. При дальнейшем отжиге атомы деформированной структуры перестраиваются так, что тоже становятся частью новых зерен, которые растут и в конце концов поглощают всю старую структуру. Заготовка сохраняет прежнюю форму, но она теперь из мягкого, ненапряженного материала, который может быть подвергнут новому циклу деформирования. Такой процесс можно повторять несколько раз, если этого требует заданная степень деформирования.

Холодная обработка это деформирование при температуре, слишком низкой для рекристаллизации. Для большинства металлов данному определению соответствует комнатная температура. Если деформирование производится при достаточно высокой температуре, так что рекристаллизация успевает следовать за деформированием материала, то такая обработка называется горячей. Пока температура остается достаточно высокой, его можно сколь угодно сильно деформировать. Горячее состояние металла определяется, в первую очередь, тем, насколько его температура близка к точке плавления. Высокая ковкость свинца означает, что он легко рекристаллизуется, т. е. его "горячую" обработку можно проводить при комнатной температуре.

Контроль текстуры. Физические свойства зерна, вообще говоря, неодинаковы в разных направлениях, так как каждое зерно это монокристалл с собственной кристаллической структурой. Свойства металлического образца представляют собой результат усреднения по всем зернам. В случае беспорядочной ориентации зерен общие физические свойства одинаковы во всех направлениях. Если же некоторые кристаллические плоскости или атомные ряды большинства зерен параллельны, то свойства образца становятся "анизотропными", т. е. зависящими от направления. В этом случае у чашечки, полученной глубоким выдавливанием из круглой пластинки, будут "язычки", или "фестоны", на верхней кромке, объясняющиеся тем, что в одних направлениях материал деформируется легче, чем в других. При механическом формообразовании анизотропия физических свойств, как правило, нежелательна. Но в листах магнитных материалов для трансформаторов и других устройств очень желательно, чтобы направление легкого намагничения, которое в монокристаллах определяется кристаллической структурой, во всех зернах совпадало с заданным направлением магнитного потока. Таким образом, "предпочтительная ориентация" (текстура) может быть желательна или нежелательна в зависимости от назначения материала. Вообще говоря, при рекристаллизации материала его предпочтительная ориентация меняется. Характер этой ориентации зависит от состава и чистоты материала, от вида и степени холодной деформации, а также от длительности и температуры отжига.

Контроль размера зерен. Физические свойства металлического образца в значительной мере определяются средним размером зерен. Наилучшим механическим свойствам почти всегда соответствует мелкозернистая структура. Уменьшение размера зерна часто является одной из целей термической обработки (а также плавления и литья). При повышении температуры ускоряется диффузия, а потому средний размер зерна увеличивается. Границы зерен смещаются так, что более крупные зерна растут за счет мелких, которые, в конце концов, исчезают. Поэтому завершающие процессы горячей обработки обычно проводят при возможно более низкой температуре, чтобы были минимальны размеры зерен. Часто специально предусматривают низкотемпературную горячую обработку, в основном для уменьшения размеров зерен, хотя того же результата можно достичь холодной обработкой с последующей рекристаллизацией.

Гомогенизация. Процессы, о которых говорилось выше, протекают и в чистых металлах, и в сплавах. Но существует ряд других процессов, которые возможны лишь в металлических материалах, содержащих два или большее число компонентов. Так, например, в отливке сплава почти наверняка будут неоднородности химического состава, что определяется неравномерным процессом затвердевания. В затвердевающем сплаве состав твердой фазы, образующейся в каждый данный момент, не таков, как в жидкой, находящейся с ней в равновесии. Следовательно, состав твердого вещества, возникшего в начальный момент затвердевания, будет иным, нежели в конце затвердевания, а это и ведет к пространственной неоднородности состава в микроскопическом масштабе. Такая неоднородность устраняется простым нагреванием, особенно в сочетании с механическим деформированием.

Очистка. Хотя чистота металла определяется в первую очередь условиями плавления и литья, очистка металла часто достигается термической обработкой в твердом состоянии. Примеси, содержащиеся в металле, реагируют на его поверхности с атмосферой, в которой он нагревается; так, атмосфера водорода или другого восстановителя может превратить значительную часть оксидов в чистый металл. Глубина такой очистки зависит от способности примесей диффундировать из объема на поверхность, а поэтому определяется длительностью и температурой термической обработки.

Выделение вторичных фаз. В основе большинства режимов термической обработки сплавов лежит один важный эффект. Он связан с тем, что растворимость в твердом состоянии компонентов сплава зависит от температуры. В отличие от чистого металла, в котором все атомы одинаковы, в двухкомпонентном, например твердом, растворе имеются атомы двух разных сортов, случайно распределенные по узлам кристаллической решетки. Если увеличивать количество атомов второго сорта, то можно достичь состояния, когда они не смогут просто замещать атомы первого сорта. Если количество второго компонента превышает этот предел растворимости в твердом состоянии, в равновесной структуре сплава появляются включения второй фазы, отличающиеся по составу и структуре от исходных зерен и обычно разбросанные между ними в виде отдельных частиц. Такие частицы второй фазы могут оказывать сильное влияние на физические свойства материала, что зависит от их размера, формы и распределения. Эти факторы можно изменять термической обработкой (термообработкой).

Термическая обработка - процесс обработки изделий из металлов и сплавов путём теплового воздействия с целью изменения их структуры и свойств в заданном направлении. Это воздействие может сочетаться также с химическим, деформационным, магнитным и др.

Историческая справка о термической обработке.
Человек использует Термическую обработку металлов с древнейших времён. Ещё в эпоху энеолита, применяя холодную ковку самородных золота и меди, первобытный человек столкнулся с явлением наклёпа, которое затрудняло изготовление изделий с тонкими лезвиями и острыми наконечниками, и для восстановления пластичности кузнец должен был нагревать холоднокованую медь в очаге. Наиболее ранние свидетельства о применении смягчающего отжига наклёпанного металла относятся к концу 5-го тысячелетия до н. э. Такой отжиг по времени появления был первой операцией Термической обработки металлов. При изготовлении оружия и орудий труда из железа, полученного с использованием сыродутного процесса, кузнец нагревал железную заготовку для горячей ковки в древесноугольном горне. При этом железо науглероживалось, то есть происходила цементация одна из разновидностей химико-термической обработки. Охлаждая кованое изделие из науглероженного железа в воде, кузнец обнаружил резкое повышение его твёрдости и улучшение др. свойств. Закалка в воде науглероженного железа применялась с конца 2 начала 1-го тысячелетия до н. э. В "Одиссее" Гомера (8 7 вв. до н. э.) есть такие строки: "Как погружает кузнец раскалённый топор иль секиру в воду холодную, и зашипит с клокотаньем железо крепче железо бывает, в огне и воде закаляясь". В 5 в. до н. э. этруски закаливали в воде зеркала из высокооловянной бронзы (скорее всего для улучшения блеска при полировке). Цементацию железа в древесном угле или органическом веществе, закалку и отпуск стали широко применяли в средние века в производстве ножей, мечей, напильников и др. инструментов. Не зная сущности внутренних превращений в металле, средневековые мастера часто приписывали получение высоких свойств при Термической обработке металлов проявлению сверхъестественных сил. До середины 19 в. знания человека о Термической обработке металлов представляли собой совокупность рецептов, выработанных на основе многовекового опыта. Потребности развития техники, и в первую очередь развития сталепушечного производства, обусловили превращение термообработки металлов из искусства в науку. В середине 19 в., когда армия стремилась заменить бронзовые и чугунные пушки более мощными стальными, чрезвычайно острой была проблема изготовления орудийных стволов высокой и гарантированной прочности. Несмотря на то что металлурги знали рецепты выплавки и литья стали, орудийные стволы очень часто разрывались без видимых причин. Д. К. Чернов на Обуховском сталелитейном заводе в Петербурге, изучая под микроскопом протравленные шлифы, приготовленные из дул орудий, и наблюдая под лупой строение изломов в месте разрыва, сделал вывод, что сталь тем прочнее, чем мельче её структура. В 1868 Чернов открыл внутренние структурные превращения в охлаждающейся стали, происходящие при определённых температурах. которые он назвал критическими точками а и b. Если сталь нагревать до температур ниже точки а, то её невозможно закалить, а для получения мелкозернистой структуры сталь следует нагревать до температур выше точки b. Открытие Черновым критических точек структурных превращений в стали позволило научно обоснованно выбирать режим Термической обработки для получения необходимых свойств стальных изделий.

В 1906 А. Вильм (Германия) на изобретённом им дуралюмине открыл старение после закалки (см. Старение металлов) важнейший способ упрочения сплавов на разной основе (алюминиевых, медных, никелевых, железных и др.). В 30-е гг. 20 в. появилась термомеханическая обработка стареющих медных сплавов, а в 50-е термомеханическая обработка сталей, позволившая значительно повысить прочность изделий. К комбинированным видам Термической обработки относится термомагнитная обработка, позволяющая в результате охлаждения изделий в магнитном поле улучшать их некоторые магнитные свойства.

Итогом многочисленных исследований изменений структуры и свойств металлов и сплавов при тепловом воздействии явилась стройная теория Термической обработки металлов.

Классификация видов Термической обработки основывается на том, какого типа структурные изменения в металле происходят при тепловом воздействии. Термическая обработка металлов подразделяется на собственно термическую, заключающуюся только в тепловом воздействии на металл, химико-термическую, сочетающую тепловое и химическое воздействия, и термомеханическую, сочетающую тепловое воздействие и пластическую деформацию. Собственно термическая обработка включает следующие виды: отжиг 1-го рода, отжиг 2-го рода, закалку без полиморфного превращения и с полиморфным превращением, старение и отпуск.

Азотирование - насыщение поверхности металлических деталей азотом с целью повышения твёрдости, износоустойчивости, предела усталости и коррозионной стойкости. Азотированию подвергают сталь, титан, некоторые сплавы, наиболее часто легированные стали, особенно хромоалюминиевые, а также сталь, содержащую ванадий и молибден.
Азотирование стали происходит при t 500 650 С в среде аммиака. Выше 400 С начинается диссоциация аммиака по реакции NH3 ’ 3H + N. Образовавшийся атомарный азот диффундирует в металл, образуя азотистые фазы. При температуре азотирования ниже 591 С азотированный слой состоит из трёх фаз (рис.): µ нитрида Fe2N, ³" нитрида Fe4N, ± азотистого феррита, содержащего около 0,01% азота при комнатной температуре. При температуре азотирования 600 650 С возможно образование ещё и ³-фазы, которая в результате медленного охлаждения распадается при 591 C на эвтектоид ± + ³1. Твёрдость азотированного слоя увеличивается до HV = 1200 (соответствует 12 Гн/м2) и сохраняется при повторных нагревах до 500 600 C, что обеспечивает высокую износоустойчивость деталей при повышенных температурах. Азотированные стали значительно превосходят по износоустойчивости цементированные и закалённые стали. Азотирование длительный процесс, для получения слоя толщиной 0,2 0,4 мм требуется 20 50 ч. Повышение температуры ускоряет процесс, но снижает твёрдость слоя. Для защиты мест, не подлежащих азотированию, применяются лужение (для конструкционных сталей) и никелирование (для нержавеющих и жаропрочных сталей). Для уменьшения хрупкости слоя азотирования жаропрочных сталей иногда ведут в смеси аммиака и азота.
Азотирование титановых сплавов проводится при 850 950 С в азоте высокой чистоты (азотирование в аммиаке не применяется из-за увеличения хрупкости металла).

При азотировании образуется верхний тонкий нитридный слой и твёрдый раствор азота в ±-титане. Глубина слоя за 30 ч 0,08 мм с поверхностной твёрдостью HV = 800 850 (соответствует 8 8,5 Гн/м2). Введение в сплав некоторых легирующих элементов (Al до 3%, Zr 3 5% и др.) повышает скорость диффузии азота, увеличивая глубину азотированного слоя, а хром уменьшает скорость диффузии. Азотирование титановых сплавов в разреженном азоте позволяет получать более глубокий слой без хрупкой нитридной зоны.
Азотирование широко применяют в промышленности, в том числе для деталей, работающих при t до 500 600 С (гильз цилиндров, коленчатых валов, шестерён, золотниковых пар, деталей топливной аппаратуры и др.).
Лит.: Минкевич А. Н., Химико-термическая обработка металлов и сплавов, 2 изд., М., 1965: Гуляев А. П..Металловедение, 4 изд., М., 1966.

Прочность элементов в особо ответственных стальных конструкциях во многом зависит от состояния узлов. Поверхность деталей играет не последнюю роль. Для придания ей необходимой твердости, стойкости или вязкости проводятся операции термической обработки. Упрочняют поверхность деталей различными методами. Один из них – закалка токами высокой частоты, то есть ТВЧ. Он относится к наиболее распространенным и очень производительным способом во время крупносерийного производства различных конструкционных элементов.

Подобная термообработка применяется как целиком к деталям, так и к отдельным их участкам. В этом случае целью является достижение определенных уровней прочности, тем самым повышая срок эксплуатации и эксплуатационные характеристики.

Технология используется для усиления узлов технологического оборудования и транспорта, а также при закаливании различного инструмента.

Сущность технологии

ТВЧ закалка – это улучшение прочностных характеристик детали за счет способности электрического тока (с переменной амплитудой) проникать в поверхность детали, подвергая ее нагреву. Глубина проникновения благодаря магнитному полю может быть различной. Одновременно с поверхностным нагревом и закаливанием сердцевина узла может быть не прогретой вовсе или лишь незначительно повысить свою температуру. Поверхностный слой обрабатываемого изделия образовывает необходимую толщину, достаточную для прохождения электрического тока. Данный слой представляет собой глубину проникновения электротока.

Эксперименты доказали, что увеличение частоты тока способствует уменьшению глубины проникновения . Данный факт открывает возможности для регулирования и получения деталей с минимальным закаленным слоем.

Термообработка ТВЧ осуществляется в специальных установках – генераторах, умножителях, преобразователях частоты, позволяющих осуществлять регулировку в необходимом диапазоне. Помимо частотных характеристик на конечную закалку оказывают влияние габариты и форма детали, материал изготовления и используемый индуктор.

Выявлена также следующая закономерность – чем меньше изделие и чем более простая у него форма, тем лучше проходит процесс закаливания. При этом также снижается общий расход электроэнергии установки.

Индуктор медный. На внутренней поверхности часто имеются дополнительные отверстия, предназначенные для подачи воды при охлаждении. В этом случае процесс сопровождается первичным нагревом и последующем охлаждении без подачи тока. Конфигурации индукторов различны. Выбираемое устройство непосредственно зависит от обрабатываемой заготовки. В некоторых аппаратах отсутствуют отверстия. В такой ситуации охлаждается деталь в особом закалочном баке.

Основным требованием к процессу ТВЧ закалки является сохранение постоянного зазора между индуктором и изделием. При сохранении заданного промежутка качество закаливания становится наиболее высоким.

Упрочнение может производится одним из способов :

  • Непрерывно-последовательный: деталь неподвижна, а индуктор движется вдоль ее оси.
  • Одновременный: изделие движется, а индуктор – наоборот.
  • Последовательный: происходит поочередная обработка различных частей.

Особенности индукционной установки

Установка для ТВЧ закалки является высокочастотным генератором совместно с индуктором. Обрабатываемое изделие располагается как в самом индукторе, так и рядом с ним. Он представляет собой катушку, на которой накручена трубочка из меди.

Переменный электрический ток при прохождении через индуктор создает электромагнитное поле, проникающее в заготовку. Оно провоцирует развитие вихревых токов (токов Фуко), которые проходят в структуру детали и повышают ее температуру.

Главная особенность технологии – проникновение вихревого тока в поверхностную структуру металла.

Повышение частоты открывает возможности для концентрации тепла на малом участке детали. Это увеличивает скорость поднятия температуры и может достигать до 100 – 200 градусов/сек. Степень твердости увеличивается до 4 единиц, что исключено во время объемного закаливания.

Индукционный нагрев – характеристики

Степень индукционного нагрева зависит от трех параметров – удельная мощность, время нагревания, частота электротока. Мощность определяет время, потраченное на нагрев детали. Соответственно при большем значении времени затрачивается меньше.

Время нагревания характеризуется общим объемом затраченного тепла и развиваемой температурой. Частота, как было сказано выше, определяет глубину проникновения токов и образованного закаливаемого слоя. Эти характеристики имеют обратную зависимость. При увеличении частоты, снижается объемная масса нагретого металла.

Именно данные 3 параметра позволяют в широком диапазоне регулировать степень твердости и глубину слоя, а также объем нагрева.

Практика показывает, что контролируются характеристики генераторной установки (значения напряжения, мощности и силы тока), а также время нагревания. Степень нагревания детали может контролироваться с помощью пирометра. Однако в основном непрерывный контроль температуры не требуется, т.к. существуют оптимальные режимы нагревания ТВЧ, обеспечивающие стабильное качество. Подходящий режим выбирается с учетом измененных электрических характеристик.

После закалки изделие отправляют в лабораторию на исследование. Изучается твердость, структура, глубина и плоскость распределенного закаливаемого слоя.

Поверхностная закалка ТВЧ сопровождается большим нагревом в сравнении с обычным процессом. Объясняется это следующим образом. В первую очередь, высокая скорость повышения температуры способствует увеличению критических точек. Во вторую, необходимо в короткий срок обеспечить завершение превращения перлита в аустенит.

Высокочастотное закаливание, в сравнении с обычным процессом, сопровождается более высоким нагревом. Однако металл не перегревается. Объясняется это тем, что зернистые элементы в стальной структуре не успевают разрастись за минимальное время. Кроме этого объемная закалка имеет прочность ниже до 2-3 единиц. После закалки ТВЧ деталь обладает большей износостойкостью и твердостью.

Как выбирается температура?

Соблюдение технологии должно сопровождаться правильным выбором температурного диапазона. В основную очередь все будет зависеть от обрабатываемого металла.

Сталь классифицируется на несколько типов:

  • Доэвтектоидная – содержание углерода до 0,8%;
  • Заэвтектоидная – более 0,8%.

Доэвтектоидная сталь нагревается до значения чуть большего, чем необходимо для преобразования перлита и феррита в аустенит. Диапазон от 800 до 850 градусов. После этого деталь с высокой скоростью охлаждается. После резкого остывания аустенит преобразовывается в мартенсит, имеющий высокую твердость и прочность. При небольшом времени выдержки получается аустенит мелкозернистой структуры, а также мелкоигольчатый мартенсит. Сталь получает высокую твердость и небольшую хрупкость.

Заэвтектоидная сталь нагревается меньше. Диапазон от 750 до 800 градусов. В этом случае производится неполная закалка. Объясняется это тем, что подобная температура позволяет сохранить в структуре некоторый объем цементита, имеющего более высокую твердость в сравнении с мартенситом. При быстром охлаждении аустенит преобразовывается в мартенсит. Цементит же сохраняется мелкими включениями. Зона также сохраняет не растворившийся полноценно углерод, превратившийся в твердый карбид.

Достоинства технологии

  • Контролирование режимов;
  • Замена легированной стали на углеродистую;
  • Равномерный процесс прогрева изделия;
  • Возможность не нагревать всю деталь полностью. Снижение энергопотребления;
  • Высокая получаемая прочность обработанной заготовки;
  • Не происходит процесс окисления, не сжигается углерод;
  • Нет микротрещин;
  • Отсутствуют коробленые точки;
  • Нагрев и закаливание определенных участков изделий;
  • Снижение временных затрат на процедуру;
  • Внедрение при изготовлении деталей ТВЧ установок в технологические линии.

Недостатки

Главным минусом рассматриваемой технологии является значительная цена установки. Именно по этой причине целесообразность применения оправдывается лишь на крупносерийном производстве и исключает возможность проведения работы своими руками в домашних условиях.

Более подробно работу и принцип действия установки изучите на представленных видео.