Сбор нагрузок на столбчатый фундамент пример. Сбор нагрузок на фундамент. Определение значения для расчета

Сбор нагрузок разберем на примере. Для расчета ленточного фундамента понадобится собрать нагрузки ото всех конструкций - от крыши до стен.

В чем заключается сбор нагрузки? Начнем с того, что ширина подошвы фундамента непосредственно зависит от величины нагрузки от конструкций. Поэтому первый шаг - это анализ того, сколько типов фундаментных лент мы назначим.

В нашем примере мы рассмотрим двухэтажный дом без подвала с несущими стенами вдоль цифровых осей. На эти стены опираются сборные плиты перекрытия над первым этажом и монолитное перекрытие над вторым этажом, также на них опираются стропила деревянной кровли. Вдоль буквенных осей - самонесущие стены.

Каким образом собирается нагрузка? Если стена самонесущая, то считается просто вес одного погонного метра этой стены (окна и двери условно не учитываем). Если стена является несущей, и на нее опираются перекрытие, конструкции крыши или лестница, то к весу самой стены прибавляется еще и нагрузки от половины пролета перекрытия (крыши). Площадь, с которой собирается нагрузка называется грузовой площадью. Допустим, расстояние между двумя несущими стенами 4 метра. Нагрузку мы собираем на 1 погонный метр. Одна половина пролета придется на одну стену, вторая - на вторую. Значит, грузовая площадь для каждой стены от этого перекрытия равна 4*1/2 = 2 м 2 . Если на стену опирается перекрытие с двух сторон, то эти две грузовые площади нужно складывать.

На рисунке показана схема дома и грузовые площади для каждой стены.

Нагрузка на стены по оси «1» и «3» одинаковая, это будет первый тип фундамента. Нагрузка на стену по оси «2» значительно больше, чем на наружные стены (во-первых, в два раза больше нагрузка от перекрытий и крыши, во-вторых, сама стена по оси «2» выше), это будет второй тип фундамента. И третий тип - нагрузка от самонесущих стен по осям «А» и «Б».

После того, как определились с количеством типов фундаментов, определим нагрузки от конструкций.

1. Нагрузка на 1 м 2 перекрытия над первым этажом.

Плиты перекрытия сборные, круглопустотные - 300 кг/м 2

Полы:

звукоизолирующая стяжка толщиной 40 мм, 20 кг/м 3

линолеум толщиной 2 мм, 1800 кг/м 3

Итого:

Нагрузки

Коэффициент

40*20/1000=0,8

15*1800/1000=27

2*1800/1000=3,6

300*1,1=330

0,8*1,3=1,04

27*1,3=35,1

3,6*1,3=4,7

Временная нагрузка для жилых помещений - 150 кг/м 2

150*1,3=195

2. Нагрузка на 1 м 2 перекрытия над вторым этажом.

Перекрытие монолитное железобетонное, толщиной 140 мм, 2500 кг/м 3

Полы:

выравнивающая стяжка толщиной 15 мм, 1800 кг/м 3

Итого:

Нагрузки

Коэффициент

140*2500/1000=350

15*1800/1000=27

350*1,1=385

27*1,3=35

70*1,3=91

Обрешетка из сосновых досок, толщиной 50 мм, 600 кг/м 3

Ондулин - 3,5 кг/м 2

Стропильная нога сечением 5х14см, шаг стропил 1м, из соснового бруса 600 кг/м 3

Итого:

Снеговая нагрузка (для 4 района, ДБН В.1.2-2:2006, раздел 8) - 140 кг/м 2 , коэффициент «мю» = 1,25

Нагрузки

Коэффициент

50 * 6 00/1000=30

5*14*600/(1*10000)=4,2

30*1,1=3 3

4,2*1,1=4,6

1,25

140*1,25=175

Утеплитель из пенополистирола толщиной 50 мм, 50 кг/м 3

Итого:

Нагрузки

Коэффициент

380*1800/1000=684

50*50/1000=2,5

2*40*1700/1000=136

684*1,1=752

2,5*1,1=2,75

136*1,1=150

Стена из полнотелого кирпича на тяжелом растворе толщиной 380 мм, 1800 кг/м 3

Штукатурка толщиной 40 мм - с двух сторон, 1700 кг/м 3

Итого:

Нагрузки

Коэффициент

380*1800/1000=684

2*40*1700/1000=136

684*1,1=752

136*1,1=150

Определим нагрузку на 1 погонный метр первого типа фундамента (по оси «1» и «3»).

От веса стены высотой 7,4 м

От перекрытия над первым этажом (пролетом в чистоте 3,4 м)

От перекрытия над вторым этажом (пролетом в чистоте 3,4 м)

От конструкции крыши (длина наклонного стропила 5 м)

Итого:

На перекрытие над первым этажом (пролетом в чистоте 3,4 м)

На перекрытие над вторым этажом (пролетом в чистоте 3,4 м)

Снеговая нагрузка (длина наклонного стропила 5 м)

Итого:

Нагрузки

823* 7,4 = 6090

332*3,4/2 = 565

377*3,4/2 = 641

38 *5/2 = 95

7391

905* 7,4 =6697

371*3,4/2= 631

420*3,4/2= 714

42 *5/2= 105

8147

150*3,4/2 = 255

70*3,4/2 =119

140*5/2 =350

195*3,4/2=332

91*3,4/2=155

175*5/2=438

Определим нагрузку на 1 погонный метр второго типа фундамента (по оси «2»).

От веса стены высотой 9,6 м

От двух перекрытий над первым этажом (пролетом каждого в чистоте 3,4 м)

От двух перекрытий над вторым этажом (пролетом каждого в чистоте 3,4 м)

От конструкции крыши (длина каждого наклонного стропила 5 м)

Итого:

На два перекрытия над первым этажом (пролетом каждого в чистоте 3,4 м)

На два перекрытия над вторым этажом (пролетом каждого в чистоте 3,4 м)

Снеговая нагрузка на два стропила (длина наклонного стропила 5 м)

Итого:

Нагрузки

820*9,6=7872

2*332*3,4/2 = 1130

2*377*3,4/2 =1282

2* 38 *5/2 =1 9 0

1 0474

902*9,6=8659

2*371*3,4/2=1262

2*420*3,4/2=1428

2* 42 *5/2= 210

11559

2*150*3,4/2 = 510

2*70*3,4/2 =238

2*140*5/2 =700

1448

2*195*3,4/2=664

2*91*3,4/2=310

2*175*5/2=876

1850

Определим нагрузку на 1 погонный метр третьего типа фундамента (по оси «А» и «Б»).

От веса стены высотой 9,6 м (высоту стены берем по максимуму)

Нагрузки

823*9,6=7901

905*9,6=8688

Итак, нагрузки собраны, можно приступать к расчету ленточного фундамента.

Внимание! Для удобства ответов на ваши вопросы создан новый раздел

Очень важным и ответственным моментом в строительстве считается закладка несущего основания.

Схема расчета нагрузок на фундамент.

На фундамент опираются все несущие конструкции. Чтобы избежать ошибок при глубине закладки, необходимо произвести расчет нагрузок и посчитать все на стадии проектирования.

Сбор всех нагрузок обеспечит длительный срок службы строения и отличную прочность.

Величина массы на грунт

Таблица расчета ленточного фундамента для дома.

В первую очередь считается вся тяжесть на грунтовое основание. Сюда входит масса постройки, мебель, количество людей, оборудование и временные тяжести (погодные условия). Чтобы произвести расчет площади опор, на которые будет ложиться постройка, считаются следующие параметры:

  • тяжесть несущего основания;
  • все материалы, которые планируется применять при строительстве, включая все отделочные работы;
  • Характерные особенности грунтового основания.

Чтобы произвести расчет нагрузок, к примеру, на ленточный фундамент, необходимо учесть следующий сбор:

  • несущая подошва;
  • грунт выше подошвы;
  • пол и лестница;
  • цоколь;
  • потолок;
  • крыша;
  • стены с внутренней и внешней отделкой.

Таблица расчета нагрузки на фундамент по регионам.

Определение нагрузок на фундамент производится калькуляцией средних справочных данных массы всех материалов. Если умножить величины на объем строения, то можно получить необходимый расчет нагрузок. Изначально производится калькуляция несущего основания. Для определения веса необходимо объем основания умножить на удельную тяжесть.

Расчет площади подошвы повлияет на давление, на грунтовое основание. При этом нагрузка на каждый квадратный см не должна превышать критического значения. Необходимо учитывать тот факт, что несущая способность грунта (почвы) имеет несколько значений, которые и называют расчетом сопротивления.

Тяжесть на грунтовое основание

Для того чтобы произвести верный расчет нагрузок, необходимо сложить сбор массы дома и фундамент. Помимо типа грунтового основания, следует учесть размеры, тип строения и глубину закладки. Схема и эскиз значительно упростят расчет, а удельное давление необходимо вычислить как отношение тяжести дома к общей площади подошвы.

Рассмотрим один пример калькуляции нагрузок на фундамент и того, как выбрать основание. По условию задачи нам дан двухэтажный дом, площадью 6 х 6 м и высотой этажа 2,5 м. Для начала найдем длину внешних и внутренних стен одного этажа. Для этого (6 + 6) х 2 + 6 = 30 м. Умножаем данную сумму на 2 и получаем длину двух этажей. В нашем случае получается 60 м.

Схема расчетов нагрузки, допускаемых на сваю, с учетом допустимых перегрузок.

Следующим шагом станет определение площади стен. Для этого 60 м х 2,5 м = 150 м 2 . Далее следует вычислить площадь перекрытий чердачного и цокольного уровней (6 х 6 = 36 м 2). В большинстве случаев крыша выступает за стены конструкции. Для примера в расчет возьмем длину выступа 50 см и определим площадь. В этом случае длина получится на 1 м больше (7), таким образом, площадь получится 49 м 2 .

Затем находим дополнение побочных нагрузок на фундамент (мебель, оборудование, люди). К примеру, 100 кг/кв.м (49 кв.м х 100 кг/кв.м = 4900 кг), все суммируем и получаем цифру воздействия на несущее основание. Примерный расчет и сбор нагрузок на фундамент разных типов строения, включая временные осадки.

На непучинистых грунтах самая малая глубина заложения несущего основания должна быть 0,5 м. Если говорить о российских регионах, то придел грунтового промерзания составляет примерно 1,2 м. В этом случае фундамент закладывают на глубину 1,5 м. Жилое строение исключает замерзание грунта под собой, поэтому с учетом нагрузок минимальная глубина должна быть 0,5-0,7 м. Если грунт рыхлый, то его необходимо заменить на более плотный.

Ширина подошвы мелкого заложения

Схема расчета плитного фундамента.

И его ширина высчитывается из расчета массы дома на единицу площади и несущей способности почвы под подошвой. В этом случае учитывается несущая способность грунта. Нужно, чтобы она была больше удельного веса дома минимум на 30%. Тогда умножаем полную тяжесть строения на 1,3 и получаем несущую способность почвы. Ленточный фундамент (ширина) умножается на его длину и сопротивление грунта, полученная сумма и есть несущая способность грунта.

Ленточный фундамент мелкозаложенный, и его ширина будет известна, если сделать сбор веса дома, длину несущего основания и подсчитанное сопротивление грунта. Как упоминалось выше, вес всего строения – это сбор веса стен, перекрытий и крыши. Приведем примеры веса стен подсчитанного материала дома.

Детальные примеры и подробные подсчеты

Рассмотрим пример. Строим ленточный фундамент и одноэтажный дом площадью (10 х 10) с одной стеной внутри и высотой потолка 3 м. Посчитаем общую площадь всех стен. Для этого 10 х 4 х 3 = 120, 10 х 3 = 30, затем 120 + 30 = 150 кв.м. В качестве примера выберем кирпичные стены из таблицы, 500 кг/м х 150 кв.м = 75000 кг. Затем к массе стен добавляем вес перекрытий из таблицы.

Схема строительства фундамента.

Возьмем в качестве примера чердачное перекрытие плотностью 300 кг и цокольное из железобетона. Напоминаем, что наша площадь одноэтажного дома составляет 100 кв.м. Умножаем площадь на тяжесть чердачного перекрытия и площадь строения на вес цокольного железобетонного перекрытия и суммируем все (100 х 150 + 100 х 500 = 65000 кг). Чтобы получить сумму нагрузки на ленточный фундамент, прибавим к перечисленному ранее еще массу крыши. Для этого необходимо сделать сбор категорий стропильных материалов кровли.

Размер доски Количество досок в м 3 , длина 6 м Объем одной доски в м 3 , длина 6 м
25 х 100 мм 66,6 0,015
25 х 150 мм 44,4 0,022
25 х 200 мм 33,3 0,03
40 х 100 мм 41,6 0,024
40 х 150 мм 27,7 0,036
40 х 200 мм 20,8 0,048
50 х 50 мм 66,6 0,015
50 х 100 мм 33,3 0,03
50 х 150 мм 22,2 0,045
50 х 200 мм 16,6 0,06
50 х 250 мм 13,3 0,075

Определение крыши и итоговый результат

Схема свайно-ростверкового фундамента.

Для определения тяжести крыши возьмем в качестве примера площадь проекции 120 кв.м и угол наклона крыши 30 градусов. Предположим, что для нашего домика понадобится 32 доски длиной 200 мм, толщиной 50 мм и 10 брусьев 150 мм на 100 мм. Удельный вес пиломатериалов на ленточный фундамент 500 кг/кв.м, теперь можно рассчитать вес стропил:

((32 х 0,06) + (10 х 0,09)) х 500 = 1410 кг.

К данной цифре прибавляется масса материала, выбранного для крыши. Возьмем ондулин (150 х 4 = 600 кг), общий вес кровли получится 2010 кг (1410 + 600).

К данному значению возьмем снеговую дополнительную нагрузку, к примеру, 120 кг/кв.м. Умножаем площадь крыши 120 на 120 кг и получаем 14400 кг дополнительной тяжести. Также следует учесть и ветровую нагрузку на ленточный фундамент. Здесь умножается площадь дома на 15 и высоту дома и прибавляется 40, получается ветровая нагрузка (100 х 15 х 7 + 40 = 14500 кг). Затем просчитывается еще дополнительная нагрузка, которая будет находиться в доме (мебель, оборудование, люди). Для помощи можно воспользоваться еще одной таблицей.

В качестве примера мы используем жилой дом, поэтому умножаем площадь дома на 195 (100 х 195 = 19500 кг). На финише мы получили все цифры, необходимые для суммирования подсчета на ленточный фундамент.

  • стены дома – 75000 кг.;
  • перекрытия – 65000 кг.;
  • крыша – 2010 кг.;
  • дополнительная нагрузка (мебель, оборудование, люди) – 19500 кг.

Общая сумма получается 320010 кг. Теперь можно определить общий вес строения и превратить его сразу в формулу. Полный вес дома умножается на 1,3, тогда получаем несущую конструкцию грунта. Несущая способность грунта равна ширине основания, умноженной на его длину и умноженной на сопротивление грунта. Таким образом можно легко рассчитать ширину подошвы. Полную массу строение умножают на 1,3 и делят на длину основания, умноженного на сопротивление грунта.

Расчет сопротивление грунта и глубина заложенного основания

Следует помнить, что ширина фундамента должна быть больше ширины стен. Наибольшую сложность из расчетов представляет собой определение сопротивления грунта на строительной площадке. Здесь лучше заказать геологическое исследование, а не делать самостоятельный расчет. Можно просмотреть таблицу и попробовать выполнить самостоятельный расчет.

Виды грунтовой почвы Сопротивление грунта
6 кг/см³
Крупнообломочные галечниковые (щебенистые) 4-4,5 кг/см³
Крупнообломочные гравийные (дресвяные) 5 кг/см³
Крупный песок 5 кг/см³
Песок средней крупности 4 кг/см³
Мелкий маловлажный песок 3-4 кг/см³
Мелкий влажный и водонасыщенный песок 2-3 кг/см³
Пылеватый маловлажный песок 2.5-3 кг/см³
Пылеватый влажный песок 1,5-2 кг/см³
Супесь 2-3 кг/см³
Суглинки 1-3 кг/см³
Глина плотная 4-6 кг/см³
Глина средней плотности 3-5 кг/см³
Глина пластичная 2-3 кг/см³
Глина водонасыщенная 1-2,5 кг/см³

Чтобы определить глубину заложения, можно воспользоваться некоторыми расчетами.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«БРАТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

КАФЕДРА СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

Основания и фундаменты

РАСЧЕТ И ПРОЕКТИРОВАНИЕ ФУНДАМЕНТОВ В ГОРОДЕ

Выполнил

студент группы ГСХ-05 Янгель Е.А

Проверил

профессор Куликов О.В


Введение

2 Определение наименования грунтов, их состояния и величин расчетных сопротивлений R0

2.1Образец №1

2.2 Образец №2

2.3 Образец №3

2.4 Образец №4

2.5 Образец №5

4 Выбор типа основания

5 Выбор рационального вида фундаментов

5.1 Расчет фундаментов мелкого заложения

6 Расчет фундаментов выбранного вида

6.1 Расчет фундамента мелкого заложения в сечении 1-1

6.2 Расчет фундамента мелкого заложения в сечении 2-2

7 Расчет оснований по предельным состояниям

7.1 Определение осадки в сечении 1-1

7.2 Определение осадки в сечении 2-2

7.3 Определение осадки в сечении 3-3

7.4 Расчет затухания осадки во времени для сечении 1-1

7.5 Расчет затухания осадки во времени для сечении 2-2

8 Конструирование фундаментов

9 Схема производства работ нулевого цикла

Заключение

Список использованных источников

Введение

Задачей курсового проектирования является разработка конструкции фундамента для жилого 4-х этажного здания, расчёт основания по предельным состояниям, а также установление типа фундамента на основе технико-экономического сравнения вариантов по их стоимости, установленной по укрупнённым показателям.

Необходимо дать обоснование принятых решений, привести необходимые схемы, поясняющие расчёты.

При выполнении курсового проекта были поставлены цели: научиться работать с действующими стандартами, нормативными документами, справочной литературой, применять современный опыт фундаментостроения.

1 Построение геологического разреза

Строительство ведётся в городе Комсомольск-на-Амуре.

Перед построением геологического разреза решается вопрос о привязке проектируемого сооружения на плане. Необходимо построение геологического разреза с ориентировочного размещения на плане проектируемого объекта. Оценивают условия освещенности объекта, направление господствующего ветра в районе строительства (в данном случае – это южный ветер), рельеф местности, условия изученности района строительства.

Так как на плане не указана застройка, то, следовательно, свободная привязка. Жилую блок-секцию длинной стороной размещают вдоль оси, соединяющей скважины №2 и №3. Окна дома не обращены на север, значит, выполняется условие инсоляции помещений (см рисунок 1.1).

Рисунок 1.1 – План строительной площадки

Первое направление для построения геологического разреза – вдоль оси, соединяющей скважины №1 и №2. Второе направление – вдоль длинной стороны объекта, т. е. вдоль оси, соединяющей скважины №2 и №3.

Геологический разрез строится с учётом геологических разрезов по всем скважинам. Отметка планировки DL=130,1 (см. рисунок 1.1).


Рисунок1.2 – Геологический разрез

2 Определение наименования грунтов, их состояния и величин расчетных сопротивлений

2.1 Образец № 1

Образец взят из скважины № 1, глубина отбора – 2м.

Определяют наименование грунта по гранулометрическому составу в соответствии с табл. 2 – песок пылеватый.

Вычисляют коэффициент пористости по формуле

е = - 1, (2.10)

где - удельный вес частиц грунта, кН/м;

Удельный вес грунта, кН/м;

е =-1 = 0,67

Т.к. 0,6≤e≤0,8 следовательно, песок средней плотности .

Вычисляют для песчаного грунта показатель степени влажности по формуле

где - удельный вес воды, принимаемый равным 10 кН/м;

Удельный вес частиц грунта, кН/м;

W – весовая влажность грунта, %.

Т.к. 0,5

Определяют расчетное сопротивление по прил.3 R=150кПа.

Вывод: Исследуемый образец №1 – песок буровато-серый, пылеватый, средней плотности, влажный с R =150 кПа.

2.2 Образец № 2

Образец взят из скважины № 1, глубина отбора – 3,5м.

Число пластичности определяется по формуле

где W - влажность грунта на границе текучести;

W р – влажность грунта на границе пластичности.

I=19-12=7 – грунт относится к супесям (1I7) в соответствии с табл.Б.11.

,

Определяют коэффициент консистенции по формуле

0,25

Вывод: исследуемый образец № 2 –супесь желто-бурая тугопластичная с R o = 260,7 кПа.

2.3 Образец № 3

Образец взят из скважины № 1, глубина отбора – 5,5м.

Определяют наименование грунта по гранулометрическому составу в соответствии с табл. 2 – песок мелкий.

Вычисляют коэффициент пористости по формуле (2.10):

е =-1 = 0,66

Т.к. 0,6≤e≤0,75 следовательно, песок средней плотности .

Вычисляют для песчаного грунта показатель степени влажности по формуле (2.11):

Т.к. 0,8

Определяют расчетное сопротивление по прил.3 R=200кПа.

Вывод: исследуемый образец № 3 –песок серый, мелкий, средней плотности, насыщенный водой с R o = 200 кПа.

2.4 Образец № 4

Образец взят из скважины № 2, глубина отбора – 8 м.

Определяют наименование грунта по числу пластичности.

Число пластичности определяется по формуле (2.12) :

I=41-23=18 – грунт относится к глинам (I>17) в соответствии с табл.Б.11.

Определяют коэффициент пористости по формуле (2.10):

,

0 ≤J L ≤0,25 – грунт полутвердый в соответствии с табл.Б.14 .

По СНиП 2.02.01-83* «Основания зданий и сооружений» методом двойной интерполяции находят

Вывод: исследуемый образец № 4 –глина коричневая полутвердая с R o = 260,7 кПа.

2.5 Образец № 5

Образец взят из скважины № 3, глубина отбора – 12 м.

Определяют наименование грунта по числу пластичности.

Число пластичности определяется по формуле (2.12):

I=20-13=7 – грунт относится к супесям (1I7) в соответствии с табл.Б.11.

Определяют коэффициент пористости по формуле (2.10):

,

Определяют коэффициент консистенции по формуле (2.13):

S= = 1

0,25 ≤J L ≤0,5 – грунт тугопластичный в соответствии с табл.Б.14.

Определяют расчетное сопротивление по прил.3 R=300кПа.

Вывод: исследуемый образец № 5 –супесь тугопластичная серовато-желтая с R o = 300 кПа.

3 Сбор нагрузок, действующих на фундаменты

Сбор нагрузок производят на грузовую площадь, которую устанавливают в зависимости от статической схемы сооружения. В данном случае конструктивная схема с поперечными несущими стенами, располагаемыми с модульным шагом 6,3 и 3,0 м, двумя продольными железобетонными стенами и плоскими железобетонными перекрытиями, образующими пространственную систему, обеспечивающую сейсмостойкость здания и воспринимающую все вертикальные и горизонтальные нагрузки.

Величины временных нагрузок устанавливаем в соответствии с. Коэффициенты надежности по нагрузкам g f также определяем по.

Сбор нагрузок производится от верха здания до отметки планировки.

Рисунок 3.1 - Грузовая площадь

При расчете временных нагрузок принимаем коэффициент надежности по нагрузке равным 1,4 в соответствии с . Сбор временных нагрузок на междуэтажные перекрытия с учетом понижающего коэффициента

, (3.1)

где n – число перекрытий, от которых нагрузка передается на основание;

.

Таблица 3.1 – Сбор нагрузок

Наименование нагрузки и конструкции

Нормативные нагрузки

Коэффициент надежности по нагрузке g f

Расчетное значение нагрузки, кН

на единицу площади, кН/м 2

на грузовую площадь, кН

1. Постоянные:

Сечение 1-1: А=1,41м 2

Покрытие:

Обрешетка (500кг/м 3 ×0,05м)

Чердачное перекрытие:

Рубероид(600×0,01)

плита перекрытия (2500×0,12)

Междуэтажные перекрытия:

линолеум (1800×0,005)

Плита перекрытия (2500×0,12)

Наружная стена (1800×0,35)

Чердачная

цокольная

1×18×0,35×4×

2. Временные:

снеговая

на чердачное перекрытие

на межэтажные перекрытия

итогоN 11 =

1. Постоянные:

Сечение 2-2: А=3,16м 2

Покрытие:

Асбестоцементные листы (1600кг/м 3 ×0,008)

Обрешетка (500кг/м 3 ×0,05м)

Деревянная строительная балка (500×0,18)

Чердачное перекрытие:

цементно-песчаный раствор (1800×0,02)

1 слой теплоизоляции (мин. вата) (125кг/м 3 ×0,21м)

Рубероид(600×0,01)

плита перекрытия (2500×0,12)

Междуэтажные перекрытия:

линолеум (1800×0,005)

Панель основания пола (800×0,04)

Звукоизоляционная прокладка (500×0,15)

Стяжка из цементного раствора (1800×0,02)

Плита перекрытия (2500×0,12)

Внутренняя стена (2500×0,16):

цокольная

1×25×0,16×4×

2. Временные:

снеговая

на чердачное перекрытие

на межэтажные перекрытия

итогоN 22 =

1. Постоянные:

Сечение 3-3: А=2,85м 2

Покрытие:

Асбестоцементные листы (1600кг/м 3 ×0,008)

Обрешетка (500кг/м 3 ×0,05м)

Деревянная строительная балка (500×0,18)

Чердачное перекрытие:

цементно-песчаный раствор (1800×0,02)

1 слой теплоизоляции (мин. вата) (125кг/м 3 ×0,21м)

Рубероид(600×0,01)

плита перекрытия (2500×0,12)

Междуэтажные перекрытия:

линолеум (1800×0,005)

Панель основания пола (800×0,04)

Звукоизоляционная прокладка (500×0,15)

Стяжка из цементного раствора (1800×0,02)

Плита перекрытия (2500×0,12)

Внутренняя стена (2500×0,16):

цокольная

1×25×0,12×4×

2. Временные:

снеговая

на чердачное перекрытие

на межэтажные перекрытия

итогоN 33 =

Примечание

1. Коэффициент надежности g f определяют в соответствии с рекомендациями .

2. При учете сочетаний, включающих постоянные и не менее 2-х временных нагрузок, расчетные значения временных нагрузок следует умножать на коэффициент сочетаний для длительных нагрузок y = 0,95.


4 Выбор вида основания

Судя по геологическому разрезу, площадка имеет спокойный рельеф с абсолютными отметками 129,40 м, 130,40 м, 130,70 м.

Грунт имеет выдержанное залегание грунтов. Грунты, находясь в естественном состоянии, могут служить основанием для фундаментов мелкого заложения. Для такого типа фундамента основанием будет служить слой №2 – песок пылеватый средней пластичности с R = 150 кПа.

Для свайного фундамента в качестве рабочего слоя лучше использовать слой №4 – песок мелкий средней плотности с R=260,7 кПа.

5 Выбор рационального вида фундамента

Выбор вида фундаментов производят на основе технико-экономического сравнения вариантов наиболее часто используемых в практике индустриального строительства фундаментов:

1 мелкого заложения;

2 свайных фундаментов.

Расчет производится для сечения с максимальной нагрузкой – по сечению 1-1.

5.1 Расчет фундамента мелкого заложения на естественном основании

Устанавливаем глубину заложения подошвы фундамента, зависящую от глубины промерзания, свойств основания грунтов и конструктивных особенностей сооружения.

Для города Комсомольск-на-Амуре нормативная глубина промерзания определяется по формуле

(5.10)

где L v - теплота таяния (замерзания) грунта, находится по формуле

, (5.12)

где z 0 - удельная теплота фазового превращения вода – лед,

;

суммарная природная влажность грунта, доли единицы, ;

относительное (по массе) содержание незамерзшей воды, доли единицы, находится по формуле

(5.13)

k w -коэффициент, принимаемый по таблице 1 в зависимости от числа пластичности I p и температуры грунта Т, °С;

w p -влажность грунта на границе пластичности (раскатывания), доли единицы.

Температура начала замерзания грунта, °С.

T f,m t f,m -соответственно средняя по многолетним данным температура воздуха за период отрицательных температур, °С и продолжительность этого периода, ч,;

C f -объемная теплоемкость соответственно талого и мерзлого грунта, Дж/(м 3 ×°С)


l f -теплопроводность соответственно талого и мерзлого грунта, Вт/(м×°С)

Расчетную глубину промерзания определяем по формуле

где k h – коэффициент, учитывающий влияние теплового режима сооружения, ,

0,4 . 2,6 = 1,04 м

Так как глубина заложения не зависит от расчетной глубины промерзания , то глубину заложения принимаем по конструктивным соображениям. В нашем случае глубину заложения откладываем от конструкции пола подвала (см.рисунок 5.1).


Рисунок 5.1 Глубина заложения фундамента

2,72 – 1,2 = 1,52 м

Все последующие расчеты выполняем методом последовательных приближений в следующем порядке:

Предварительно определяют площадь подошвы фундамента по формуле

, (5.15)

R o – расчетное сопротивление грунта под подошвой фундамента, R 0 = 150кПа;

h – глубина заложения подошвы, 1,52 м;

k зап – коэффициент заполнения (принимают равным 0,85);

g - удельный вес материалов фундамента (принимают равным 25 кН/м 3).


По таблице 6.5 подбираем плиту марки ФЛ 20.12, имеющую размеры: 1,18м, 2 м, 0,5 м и стеновые блоки марки ФБС 12.4.6, имеющие размеры: 1,18м, 0,4 м, 0,58 м, стеновые блоки марки ФБС 12.4.3, имеющие размеры: 1,18 м, 0,4 м, 0,28 м.

По таблице 2 приложения 2 для песка пылеватого средней пластичности с e = 0,67 находим 29,2 о и 3,6 КПа

По таблице 5.4 , интерполируя по углу внутреннего трения φ н, находим значения коэффициентов: 1,08, 5,33, 7,73.

Определяем значение расчетного сопротивления R по формуле

где g с1 и g с2 – коэффициенты условий работы, принимаемые по табл.5.3

g с1 = 1,25 и g с2 = 1,2;

k – коэффициент, принимаемый равным 1,1, если прочностные характеристики

грунта (с и j) приняты по табл. 1.1;

М g , М q , M c – безразмерные коэффициенты, принимаемые по табл. 1.3;

k Z – коэффициент, принимаемый при b < 10 м равным 1;

b – ширина подошвы фундамента, b=2 м;

g II – расчетное значение удельного веса грунтов, залегающих ниже подошвы

фундаментов (при наличие подземных вод определяется с учетом взвешивающего действия воды), кН/м 3 ;

g 1 II – то же, залегающих выше подошвы, кН/м 3 ;

С н – расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента, кПа;

d 1 – глубина заложения внутренних и наружных фундаментов от пола подвала м, определяют по формуле

, (5.17)

где h S – толщина слоя грунта выше подошвы фундамента со стороны подвала, м,

h cf – толщина конструкции пола подвала, h cf =0,12м;

g cf – расчетное значение удельного веса конструкции пола подвала, кН/м 3 ,

для бетона g cf =25 кН/м 3 .

Глубину до пола подвала определяют по формуле

d b =d-d 1 , (5.18)

d b =1,52-0,67=0,85м

Расчетное значение удельного веса грунтов, залегающих ниже подошвы фундаментов определяют по формуле

g II , (5.19)


где γ n – удельный вес грунтов соответствующих слоев, кН/м 3 ;

h n – толщина соответствующих слоев, м.

При наличие подземных вод расчетное значение удельного веса грунтов определяется с учетом взвешивающего действия воды по формуле

где γ s – удельный вес твердых частиц грунта, кН/м 3 ;

γ w – удельный вес воды, кН/м 3 ;

γ 1 =1,83×9,8=17,93 кН/м 3

γ 2 =1,9×9,8=18,62 кН/м 3

γ 3 =2×9,8=19,6 кН/м 3

Рисунок 5.2 – Геологический разрез по скважине №2


Расчетное значение удельного веса грунтов, залегающих выше подошвы фундаментов определяют по формуле:

Проверяют значение среднего давления под подошвой фундамента по формуле

, (5.21)

где N f - вес фундамента, кН;

N g - вес грунта на обрезах фундамента, кН;

b – ширина фундамента, м;

l = 1 м, так как все нагрузки приведены на погонный метр.

Так как ∆<10%, следовательно, фундамент запроектирован, верно.

5.2 Расчет свайного фундамента

Проектирование свайных фундаментов ведут в соответствии с . Для центрально нагруженного фундамента расчеты выполняют в следующем порядке:

а) Определяют длину сваи:

Толщину ростверка принимают равной 0,5м.

Для определения площади условного фундамента определяют средне взвешенный угол внутреннего трения по формуле:

, (5.28)

где j i – угол внутреннего трения i-го слоя; о

h n – толщина n-го слоя грунта, м;.

Тогда находят ширину условного фундамента по формуле:

b усл = 2tgah + b 0 , (5.30)

где, h – длина сваи, м;

b 0 – расстояние между наружными гранями крайних рядов свай, м.

Песок мелкий, средней плотности с е 0 =0,66 с н =1,8 кПа и φ n =31,6 о;

1,3; М g =6,18; М с =8,43.

,

Следовательно фундамент запроектирован верно.

Рисунок 5.6 – Расчетная схема свайного фундамента

5.3 Технико-экономическое сравнение вариантов

Для ленточного и свайного фундаментов производят сравнение их стоимости по укрупненным показателям. Оценка стоимости, сравнение основных видов работ при устройстве фундаментов производят для 1 погонного метра.

Объем котлована находят по формуле

(5.30)

где, a,b – ширина котлована понизу и соответственно поверху котлована, м;

u – глубина котлована, м;

l – длина котлована, м;

Для фундаментов мелкого заложения объем котлована будет равен

Для свайного фундамента будет равен:

Сравнение стоимости фундаментов приводят в табличной форме (табл. 5.1).

Таблица 5.1- Технико-экономическое сравнение вариантов

Вывод: по предварительной оценке стоимости основных видов работ при устройстве фундаментов из 2-х вариантов экономичнее и эффективнее является фундамент мелкого заложения.


6 Расчёт фундаментов принятого вида

6.1 Расчет фундаментов мелкого заложения в сечении 2 – 2

Определяем основные размеры и рассчитываем конструкцию сборного ленточного фундамента под внутреннюю стену. Глубину заложения подошвы принимаем аналогично глубине заложения стены в сечении 1-1(см. раздел 5.1). Определяем ориентировочные размеры фундамента в плане по формуле (5.15)

По табл. 6.5 и 6.6 подбираем плиту марки ФЛ 14.12, имеющую размеры L=1,18м, b =1,4 м, h=0,3 м и стеновые блоки ФБС 12.4.3 и ФБС 12.4.6

По табл. 2 прил.2 для песка пылеватого средней пластичности с коэффициентом пористости е=0,67 находим φ н =29,2 0 и С н =3,6 кПа.

По табл. 5.4, интерполируя по φ II , находим значения коэффициентов:

1,08; М g = 5,33; М с = 7,73.

Глубину до пола подвала определяют по формуле (5.18):

d b =1,32-0,47=0,85м

По формуле (5.16) определяем расчетное значение сопротивления R:

Проверяем значение среднего давления под подошвой фундамента

Р=156,9 кПа < R=171,67 кПа, приблизительно на 8,9%, значит фундамент запроектирован верно.


Т.к. двухсторонняя фильтрация используем случай 0-1.

1) Полную стабилизированную осадку определяем по формуле

, (7.11)

где h э - мощность эквивалентного слоя, м;

m vm – средний коэффициент относительной сжимаемости грунта, МПа -1 ;

2) определяют мощность эквивалентного слоя по формуле

h э = A wm b, (7.12)

где A wm – коэффициент эквивалентного слоя, зависящий от коэффициента Пуассона, формы подошвы, жесткости фундамента принимаемый по табл. 6.10 ,

A wm =2,4 (для пылевато-глинистых грунтов);

h э = 2,4 × 2 = 4,8м

Н = 2 h э = 2 ×4,8 = 9,6 м

Рисунок 7.4

3) определяют средний относительный коэффициент сжимаемости по формуле:

, (7.13)

где h i – толщина i-го слоя грунта, м;

m n i – коэффициент относительной сжимаемости i-го слоя, МПа -1 ;

z i – расстояние от середины слоя i-го слоя до глубины 2h э, м.

4) По формуле (7.11.) найдем осадку

5) Определяют коэффициент консолидации по формуле

где g w – удельный вес воды, кН/м 3 ;

К фт – средний коэффициент фильтрации, определяемый по формуле

где Н – мощность сжимаемой толщи, м;

k ф i - коэффициент фильтрации i-го слоя грунта, см/год.

6) Вычислим время, необходимое для уплотнения грунта до заданной степени по формуле

(7.16)

год = 0,23N суток = 5,52N ч

Задаемся значениями U по таблице V.4, значения N для трапецеидального распределения уплотняющих давлений определяют по формуле

где I- величина интерполяционных коэффициентов по таблице V.5.

Данные сводим в таблицу 7.4.

Таблица 7.4

7.5 Расчет затухания осадки во времени для сечения 2-2

Расчет ведут методом эквивалентного слоя при слоистой толще грунтов в следующей последовательности:

1) определяют мощность эквивалентного слоя по формуле(7.12.)

h э = 2,4×1,4 = 3,36 м

Н = 2 h э = 2 × 3,36 = 6,72 м

Рисунок 7.5

2) Определяют средний относительный коэффициент сжимаемости по формуле(7.13.)

3) По формуле (7.11.) найдем осадку

4) Находим средний коэффициент фильтрации по формуле(7.15.)

,

5) Определяют коэффициент консолидации по формуле(7.14.):

6) Вычислим время, необходимое для уплотнения грунта до заданной степени по формуле (7.16)

год =0,9N суток =21,6N ч,

Расчет осадки S t сводим в таблицу 7.5.

Таблица 7.5 - Расчёт затухания осадки

Вывод: так как осадки во всех сечения не превышают предельных значений, то размеры фундаментов и их глубина заложения рассчитаны верно.

Рисунок 7.7– График затухания осадок во времени

8 Конструирование фундаментов

После геодезической разбивки осей здания производят установку железобетонных плит для ленточных фундаментов. Сборные фундаменты состоят из ленты, собираемой из железобетонных плит (ФЛ 20.12), и стены, собираемой из бетонных блоков. Фундаментные железобетонные плиты укладываются сплошь по длине стены.

Плиты армируют одиночными сетками или плоскими арматурными блоками, собираемыми из двух сеток: верхней, имеющей маркировочный индекс К, и нижней - С. Рабочая арматура - стержневая горячекатаная периодического профиля из стали класса A-III и проволока периодического профиля из стали класса Вр-1. Распределительная арматура - гладкая арматурная проволока из стали класса B-I.

Для обеспечения пространственной жесткости сборного фундамента предусматривают связь между продольными и поперечными стенами путем привязки их фундаментными стеновыми блоками или закладки в горизонтальные швы сеток из арматуры диаметром 8-10мм. От поверхностных и подземных вод стены защищают путем устройства отмосток и укладки горизонтальной гидроизоляции на уровне не ниже 5 см от поверхности отмостки и не выше 30 см от подготовки пола подвала. Внешняя поверхность подвальных стен защищается обмазочной изоляцией в один или в два слоя.

Защита наземных помещений от грунтовой сырости ограничивается устройством по выровненной поверхности всех стен на высоте 15-20 см от верха отмостки или тротуара непрерывной водонепроницаемой прослойки из жирного цементного раствора или одного-двух слоев рулонного материала на битуме. Этот слой составляет с бетонной подготовкой пола одно целое. В местах понижения пола устраивают дополнительную изоляцию. Для защиты подвальных и заглубленных помещений во влажных грунтах обмазку делают по оштукатуренной цементным раствором поверхности стены.

Поверхности стен подвалов защищают горизонтальной водонепроницаемой прослойкой в стене, доходящей до пола подземного помещения или подвала. Изоляцией полов подвала при низком уровне вод служит сам бетонный слой.

9. Схема производства работ

Рисунок 9.1- Размеры котлована

Размеры дна котлована в плане определяются расстояниями между наружными осями сооружения, расстояниями от этих осей до крайних уступов фундаментов, размерами дополнительных конструкций, устраиваемых около фундаментов с наружных сторон и минимальной шириной зазора (позволяющей заводить подземные части сооружения) между дополнительной конструкцией и стенкой котлована. Размеры котлована поверху складываются из размеров дна котлована, ширины откосов или конструкций крепления стенок и зазора между гранями фундаментов и откосов. Глубина котлована определяется отметкой заложения фундамента.

Рабочий слой основания предохраняют от нарушений защитным слоем грунта, который снимают только перед введением фундамента. Для отвода атмосферных осадков поверхность защитного слоя выполняется с уклоном в сторону стенок, а по периметру котлована устраиваются водоотводные канавки с уклоном в сторону приямков из которых по мере необходимости откачивают воду. Устройство канавок и зумпфов и откачка из воды производятся с соблюдением требований открытого водопонижения.

Для доставки материалов, деталей и транспортирования механизмов в котлован предусматривают спуски. Устойчивость стенок котлована обеспечивается различными видами креплений или приданием им соответствующих уклонов. Способ крепления зависит от глубины котлована, свойств и напластования грунтов, уровня и дебита подземных вод, условий производства работ, расстояния до существующих строений.

Возведение фундаментов и подземных элементов, а также засыпка пазух котлованов должны производиться сразу же вслед за разработкой грунта

Котлованы с естественными откосами устраивают в маловлажных устойчивых грунтах. При глубине котлована до 5 м стенки могут выполняться без крепления, но с уклоном и крутизной откосов, которые указаны в табл.

Крепление котлованов осуществляется шпунтовыми стенами. Деревянные шпунтовые ограждения (дощатые и брусчатые) применяют для крепления неглубоких котлованов (3...5 м). Дощатый шпунт при меняют для крепления неглубоких котлованов (3...5 м). Дощатым шпунт изготовляют из досок толщиной до 8 см, брусчатый - брусьев толщиной от 10 до 24 см. Длина шпунтин определяется глубиной их погружения, но, как правило, не превышает 8 м.

В процессе работы необходимо предохранять котлован от заполнения атмосферными осадками. Для этого следует проводить планировку поверхности вокруг котлована и обеспечить сток за пределы строительной площадки.

Разрабатывать грунт котлована и возводить фундамент нужно в сжатые сроки, не оставляя открыты дно котлована на продолжительное время (чем больше промежуток между окончанием земляных работ и устройством фундамента, тем сильнее разрушается грунт основания и откосы котлована).

После возведения фундамента, пазухи между стенами фундамента и котлована заполняется грунтом, укладываемого послойно с трамбовкой.

Для данного объема земляных работ нулевого цикла подбираем скреперный комплект землеройных машин: одноковшовый экскаватор Э1252 (с емкостью ковша 1,25м3), несколько скреперов Д – 498 (с емкостью ковша 7м3), бульдозеров Д3 – 18 (на базе трактора Т – 100), автосамосвалов ЗИЛ – ММ3 – 555.

При разработке котлована (см. рисунок 9.1) производят разработку грунта под жилое здание до отметки экскаватором ЭО 1621 с вместимостью ковша 0,15 м3. Для вывоза грунта используют автосамосвал ГАЗ-93А.

Плодородный слой почвы в основании насыпей и на площади, занимаемой различными выемками, до начала основных земляных работ должен быть снят в размерах, установленных проектом организации строительства и перемещен в отвалы для последующего использования его при рекультивации или повышении плодородия малопродуктивных угодий.

Запрещается использовать плодородный слой почвы для устройства перемычек, подсыпок и других постоянных и временных земляных сооружений


Заключение

В данном проекте был разработан наиболее рациональный фундамент под 4х-этажное жилое здание - ленточный фундамент мелкого заложения. Выбор рационального вида фундамента осуществили на основе технико-экономического сравнения двух вариантов фундаментов, наиболее часто используемых в строительстве фундаментов: мелкого заложения и свайного. Сравнение вариантов было сделано на основе их стоимости, установленной по укрупненным показателям для одного метра фундамента стоимость составила для ленточного фундамента – 791,03 руб., для свайного фундамента – 848,46 руб.

Ленточный фундамент устанавливают на отметке 128,6 м, то есть он располагается в песке пылеватом, средней плотности с R=150 кПа.

В результате расчетов приняты плиты марки ФЛ 20.12, ФЛ 14.12 и ФЛ 12.12, и стеновые блоки ФБС 12.4.6 и ФБС 12.4.3.

Для выбранного типа фундамента в трех характерных сечениях зданий был произведен расчет оснований по предельному состоянию 2 группы и сравнение полученных значений с предельными значениями равными 10 см: для сечения 1-1 осадка равна 1,61 см, для сечения 2-2 – 2,61 см, для сечения 3-3 – 2,54 см.

Было произведено конструирование фундамента; рассчитана схема производства работ нулевого цикла, а также даются краткие сведения об устройстве котлована.

Список использованных источников

1. Берлинов, М.В. Примеры расчета оснований и фундаментов: Учеб. для техникумов/ М.В. Берлинов, Б.А. Ягупов. – М.: Стройиздат, 1986. – 173с.

2. Веселов, В.А. Проектирование оснований и фундаментов: Учеб. пособие для вузов / В.А.Веселов.- М.: Стройиздат, 1990. – 304с.

3. ГОСТ 25100-82. Грунты. Классификация. – М.: Стандарты, 1982.-9с.

4. Далматов, Б.И. Механика грунтов, основания и фундаменты/Б.И. Далматов. - Л.: Стройиздат, Ленингр. отд-ние, 1988.-415с.

5. Куликов, О.В. Расчет фундаментов промышленных и гражданских зданий и сооружений: Метод. указания по выполнению курсового проекта/ О.В.Куликов. – Братск: БрИИ, 1988. – 20с.

6. Механика грунтов/Б.И. Далматов [и др.]. – М.: Изд-во АСВ; СПб.: СПбГА-СУ, 2000. – 204с.

7. Механика грунтов, основания и фундаменты: Учеб.пособие для строит. спец. Вузов/С.Б. Ухов [и др.]. – М.: Высш.шк., 2004. – 566с.

8. Основания, фундаменты и подземные сооружения (Справочник проектировщика)/ под ред. Е.Н. Сорочана, Ю.Г, Трофимова. – М.: Стройиздат, 1985. – 480с.

9. Проектирование фундаментов зданий и подземных сооружений/Б.И. Далматов [и др.]. – М.: Изд-во АСВ; СПб.: СПбГА-СУ, 2006. – 428с.

10. СНиП 2.02.01-83*. Основания зданий и сооружений / Госстрой СССР. – М.: Стройиздат, 1985. – 40с.

11. СНиП 2.02.03-85. Свайные фундаменты / Госстрой СССР. – М.: ЦИТП Госстроя СССР, 1986. – 48с.

12. СНиП 2.01.07-85. Нагрузки и воздействия/Госстрой СССР. – М.: ЦИТП Госстроя СССР, 1986. – 36с.

13. СНиП 3.02.01-83. Основания и фундаменты/Госстрой СССР. – М.: ЦИТП Госстроя СССР, 1983. – 39с.

14. Цытович, Н.А. Механика грунтов/Н.А. Цытович. – М.: Высш.шк., 1979. – 272с.

Мы поговорили о сборе нагрузок для случая, когда основные несущие конструкции – это стены дома. Сейчас все чаще случается, что частные жилые дома строят каркасного типа: когда несущими являются колонны, опирающиеся на столбчатые фундаменты, и воспринимающие нагрузку от перекрытий, балок, стен, перегородок, полов, крыши – в общем, всего, что в доме запроектировано. Подход к сбору нагрузок в этом случае несколько иной.

Предположим, у нас есть двухэтажный дом (второй этаж – полумансардный) каркасного типа: столбчатые фундаменты с фундаментными балками (под стены 1 этажа), монолитные колонны, монолитные перекрытия (безбалочные, только по периметру – обвязочная балка), продольные монолитные балки на втором этаже – поддерживающие конструкции крыши; деревянная крыша, наружные стены – из газобетона, перегородки – кирпичные.

Постараемся собрать нагрузки для расчета:

1) столбчатого фундамента под центральную колонну (оси 2/Б);

2) столбчатого фундамента под угловую колонну (оси 1/В);

3) столбчатого фундамента под крайнюю колонну (оси 4/Г);

4) фундаментной балки.

Выберем город проектирования (для снеговой нагрузки) – пусть это будет Николаев.

Внимание! Сечения несущих элементов (толщина перекрытия, размеры стропильных ног, колонн, балок) взяты просто для примера, их размеры не подтверждены расчетом и могут значительно отличаться от принятых.

1. Нагрузка от 1 м 2 перекрытия над первым этажом.

Нагрузки

Коэффициент

Монолитная плита толщиной 200 мм (2500 кг/м 3)

200*2500/1000=500

звукоизолирующая стяжка толщиной 40 мм, 20 кг/м 3

выравнивающая стяжка толщиной 15 мм, 1800 кг/м 3

линолеум толщиной 2 мм, 1800 кг/м 3

5 32

59 1

Временная нагрузка для жилых помещений - 150 кг/м 2

(ДБН В.1.2-2:2006 «Нагрузки и воздействия», таблица 6.2)

150*1,3=195

Нагрузки

Коэффициент

Обрешетка из сосновых досок, толщиной 50 мм, 600 кг/м 3

Металлочерепица - 5 кг/м 2

Стропильная нога сечением 10х20см, шаг стропил 1,2м, из соснового бруса 600 кг/м 3

10*20*600/(1,2* 10000)=10

Итого:

Потолок – гипсокартон 9,5мм – 7,5 кг/м 2

Утеплитель – минеральная вата, толщиной 200 мм, 135 кг/м 3

Итого:

Балка чердачного перекрытия сечением 5х15см, шаг балок 1,2м, из соснового бруса 600 кг/м 3

5*15*600/(1,2* 10000)=3,8

3,8*1,1=4,2

Снеговая нагрузка (ДБН В.1.2-2:2006, раздел 8 и приложение Е) - 87 кг/м 2 , коэффициент «мю» = 1,25

87*1,25=109

Нагрузки

Коэффициент

Стена из газобетона на клее толщиной 300 мм, 400 кг/м 3

300*400/1000=120

Утеплитель из пенополистирола толщиной 80 мм, 50 кг/м 3

Штукатурка толщиной 20 мм, 1700 кг/м 3

Г ипсокартон 12,5мм – 9,5 кг/м 2

4 . Нагрузка от 1 м 2 кирпичной перегородки.

Нагрузки

Коэффициент

Перегородка из полнотелого кирпича на тяжелом растворе толщиной 120 мм, 1800 кг/м 3

120*1800/1000=216

Г ипсокартон 12,5мм с двух сторон – 9,5 кг/м 2

5 . Нагрузка от собственного веса железобетонных конструкций (на 1 пог. метр).

Нагрузки

Коэффициент

Колонна сечением 0,3х0,3м, 2500 кг/м 3

0,3*0,3*2500=225

Железобетонная балка под коньком и под стропильной ногой сечением 0,3х0,4м, 2500 кг/м 3

0,3*0,4*2500=300

Железобетонная обвязочная балка по периметру дома сечением 0,3х0,25м, 2500 кг/м 3

0,3*0,25*2500=188

Теперь необходимо перейти к сбору нагрузок на фундаменты. В отличие от нагрузки на ленточный фундамент, которая определяется на погонный метр, нагрузка на столбчатый фундамент собирается в килограммах (тоннах), так как по сути является сосредоточенной и передается в виде силы N от колонны – фундаменту.

Как перейти от равномерно распределенной нагрузки к сосредоточенной? Нужно умножить ее на площадь (для нагрузки, измеряемой в кг/м 2) или на длину (для нагрузки, измеряемой в кг/м). Так, на колонну, расположенную на пересечении осей «2» и «Б» нагрузка передается с прямоугольника, обозначенного на рисунке выше розовым цветом, размеры этого прямоугольника 2,75х3 м 2 . Как определить эти размеры? По горизонтали у нас есть два пролета между соседними колоннами: один 4,5 м, второй – 1,5 м. От каждого из этих пролетов половина нагрузки приходится на одну колонну, а половина – на другую. В итоге, для нашей колонны длина сбора нагрузки будет равна:

4,5/2 + 1,5/2 = 2,25 + 0,75 = 3 м.

Точно так же определяется длина сбора нагрузки в перпендикулярном направлении:

3/2 + 2,5/2 = 1,5 + 1,25 = 2,75 м.

Площадь сбора нагрузки для колонны по оси 2/Б равна: 3*2,75=8,25 м 2 .

Но для этой же колонны площадь сбора нагрузки от крыши уже будет другой, т.к. колонны по оси «3» на втором этаже уже нет (это видно на разрезе дома), и пролет справа от колонны возрастает до 4,5 м. В табличном расчете это будет учтено.

6. Определим нагрузку на столбчатый фундамент под колонну в центре здания (по оси «2/Б»).

Нагрузки

От собственного веса колонны общей высотой 7м

От собственного веса балки под коньком длиной 2,75м (см. чертеж)

От перекрытия над первым этажом (площадью 2,75*3,0=8,25м 2)

От конструкции крыши (суммарная длина наклонных стропил 2,6+2,6=5,2м; длина сбора нагрузки вдоль оси «2» 2,75м)

45*5,2*2,75 =644

От балок перекрытия чердака (площадь сбора нагрузки 4,5х2,75 м 2)

От утеплителя крыши и гипсокартона (площадь сбора нагрузки 4,5х2,75 м 2)

От веса перегородки (длина 2,75 м, высота 2,8 м)

235*2,75*2,8=1810

259*2,75*2,8=1995

На перекрытие над первым этажом (площадью 2,75*3,0=8,25м 2)

Снеговая нагрузка (суммарная длина наклонных стропил 2,6+2,6=5,2м; длина сбора нагрузки вдоль оси «2» 2,75м)

87*5,2*2,75=1244

109*5,2*2,75=1559

Пояснения:

1. Высота колонны считается от верха фундамента до низа перекрытия плюс от верха перекрытия до низа балки под коньком.

2. При подсчете нагрузки от конструкций крыши нужно обращать внимание на площадь сбора нагрузки – для наклонных элементов площадь больше, для расположенных горизонтально – меньше. В данном случае стропильные ноги, металлочерепица и обрешетка расположены наклонно и имеют большую площадь, чем расположенные горизонтально деревянные чердачные балки, утеплитель и гипсокартон. Для двух других колонн будет иная ситуация.

3. Нагрузка от веса перегородки берется от той части перегородки, которая опирается на участок перекрытия, с которого собирается нагрузка (на рисунке заштрихован розовым). Т.к. в таблице 4 собиралась нагрузка от 1 кв. метра перегородки, то ее нужно умножить на высоту и длину перегородки.

7. Определим нагрузку на столбчатый фундамент под колонну по наружной стене (по оси «1/В»).

Нагрузки

От собственного веса балки под стропилом длиной 3,25м

От собственного веса обвязочной балки длиной 3,25м

От перекрытия над первым этажом (площадью 3,25*2,4=7,8м 2)

От конструкции крыши (длина наклонного стропила 3,23м; длина сбора нагрузки вдоль оси «1» 3,25м)

45*3,23*3,25 =472

50*3,23*3,25=525

От утеплителя крыши и гипсокартона (длина наклонного стропила 3,23м; длина сбора нагрузки вдоль оси «1» 3,25м)

35*3,23*3,25=368

44*3,23*3,25=462

От веса стены (длина 3,25 м, суммарная высота 4,2 м)

170*3,25*4,2=2321

187*3,25*4,2=2553

От веса перегородки (длина 3,25 м, средняя высота (1,55+2,75)/2=2,15 м)

235*3,25*2,15=1642

259*3,25*2,15=1810

На перекрытие над первым этажом (площадью 3,25*2,4=7,8м 2)

Снеговая нагрузка (длина наклонного стропила 3,23м; длина сбора нагрузки вдоль оси «1» 3,25м)

87*3,23*3,25=913

109*3,23*3,25=1144

Пояснения:

1. Высота обвязочной балки считается до низа перекрытия, чтобы не учитывать один и тот же бетон дважды.

2. Утеплитель и гипсокартон в данном случае расположены наклонно, поэтому и площадь их берется соответственно.

3. Высота перегородки из-за наклонной крыши не одинаковая. Среднюю высоту находим как сумму наименьшей и наибольшей высот перегородки (на участке, с которого собирается нагрузка), деленную на два.

8. Определим нагрузку на столбчатый фундамент под угловую колонну (по оси «4/Г»).

Нагрузки

От собственного веса колонны общей высотой 4,2м

От собственного веса балки под стропилом длиной 2,15м

От собственного веса обвязочной балки суммарной длиной 2,15+1,65-0,3=3,5м

От перекрытия над первым этажом (площадью 2,15*1,65=3,6м 2)

От конструкции крыши (длина наклонного стропила 3,23м; длина сбора нагрузки вдоль оси «4» 2,15м)

45*3,23*2,15 =313

50*3,23*2,15=347

От утеплителя крыши и гипсокартона (длина наклонного стропила 3,23м; длина сбора нагрузки вдоль оси «4» 2,15м)

35*3,23*2,15=243

44*3,23*2,15=306

От веса стены вдоль оси «4» (длина 2,15-0,3=1,85 м, суммарная высота 4,2 м)

170*1,85*4,2=1321

187*1,85*4,2=1453

От веса стены вдоль оси «Г» (длина 1,65-0,3=1,35 м, суммарная высота 2,8+(1,57+2,32)/2=4,8 м)

170*1,35*4,8=1102

187*1,35*4,8=1212

На перекрытие над первым этажом (площадью 2,15*1,65=3,6м 2)

Снеговая нагрузка (длина наклонного стропила 3,23м; длина сбора нагрузки вдоль оси «4» 2,15м)

87*3,23*2,15=604

109*3,23*2,15=757

Пояснения:

1. Балка под стропилом расположена только вдоль оси «4», вдоль оси «Г» ее нет, поэтому длина балки берется 2,15 м. В то время как обвязочная балка идет по периметру здания, и ее длину находим сложением участков 2,15 м и 1,65 м, за вычетом 0,3 м – размер стороны колонны (чтобы не дублировать один бетон дважды).

2. Суммарная высота стены вдоль оси «Г» находится, исходя из следующих данных: 2,8 м – высота кладки на первом этаже; 1,57 м – наименьшая высота стены на втором этаже на участке, с которого собирается нагрузка; 2,32 м - наибольшая высота стены на втором этаже на участке, с которого собирается нагрузка.

9. Определим нагрузку на 1 погонный метр фундаментной балки от стены из газобетона

От веса 1 пог. метра стены первого этажа (высота стены 2,8 м)

Нагрузки

Пояснение:

Т.к. дом каркасный, то несущими элементами в нем являются колонны, которые воспринимают нагрузку от крыши и перекрытия и передают ее на столбчатые фундаменты. Поэтому стены первого и второго этажа служат лишь заполнением и воспринимаются перекрытием и фундаментными балками как нагрузка, а сами при этом ничего не несут.

Итак, сбор нагрузки на фундамент завершен, да не совсем. Если колонны связаны с фундаментами шарнирно, то данных (вертикальных) нагрузок будет достаточно для расчета фундаментов. Если же связь колонн с фундаментами жесткая, то на фундамент от колонн будет передаваться не только вертикальная сила N (кг), но и изгибающие моменты в двух плоскостях Мх и Му (кг*м) и поперечные силы Qx и Qy (кг). Для их определения нужно посчитать колонны первого этажа и найти моменты и поперечные силы в нижнем сечении. В данном примере они будут небольшими, но все-таки будут, игнорировать их при расчете фундаментов нельзя.

В продолжение этого расчета читайте статью "Сбор ветровых нагрузок в каркасном доме" в ней мы приблизимся к определению моментов и поперечных сил для расчета фундамента.

Внимание! Для удобства ответов на ваши вопросы создан новый раздел "БЕСПЛАТНАЯ КОНСУЛЬТАЦИЯ" .

В комментариях к этой статье прошу задавать вопросы только по статье.

Калькулятор Вес-Дома-Онлайн v.1.0

Расчет веса дома с учетом снеговой и эксплуатационной нагрузки на перекрытия (расчет вертикальных нагрузок на фундамент). Калькулятор реализован на основе СП 20.13330.2011 Нагрузки и воздействия (актуал. версия СНиП 2.01.07-85).

Пример расчета

Дом из газобетона размерами 10х12м одноэтажный с жилой мансардой.

Входные данные

  • Конструктивная схема здания: пятистенок (с одной внутренней несущей стеной по длинной стороне дома)
  • Размер дома: 10х12м
  • Количество этажей: 1 этаж + мансарда
  • Снеговой район РФ (для определения снеговой нагрузки): г.Санкт-Петербург – 3 район
  • Материал кровли: металлочерепица
  • Угол наклона крыши: 30⁰
  • Конструктивная схема: схема 1 (мансарда)
  • Высота стен мансарды: 1.2м
  • Отделка фасадов мансарды: кирпич лицевой фактурный 250х60х65
  • Материал наружных стен мансарды: газобетон D500, 400мм
  • Материал внутренних стен мансарды: не участвует (конек подпирают колоны, которые в расчете не участвуют из-за малого веса)
  • Эксплуатационная нагрузка на перекрытия: 195кг/м2 – жилая мансарда
  • Высота первого этажа: 3м
  • Отделка фасадов 1 этажа: кирпич лицевой фактурный 250х60х65
  • Материал наружных стен 1 этажа: газобетон D500, 400мм
  • Материал внутренних стен этажа: газобетон D500, 300мм
  • Высота цоколя: 0.4м
  • Материал цоколя: кирпич полнотелый (кладка в 2 кирпича), 510мм

Размеры дома

Длина наружных стен: 2 * (10 + 12) = 44 м

Длина внутренней стены: 12 м

Общая длина стен: 44 + 12 = 56 м

Высота дома с учетом цоколя = Высота стен цоколя + Высота стен 1-го этажа + Высота стен мансарды + Высота фронтонов = 0.4 + 3 + 1.2 + 2.9 = 7.5 м

Для нахождения высоты фронтонов и площади кровли воспользуемся формулами из тригонометрии.

АВС – равнобедренный треугольник

АВ=ВС – неизвестно

АС = 10 м (в калькуляторе расстояние между осями АГ)

Угол ВАС = Угол ВСА = 30⁰

ВС = AC * ½ * 1/ cos(30⁰) = 10 * 1/2 * 1/0.87 = 5.7 м

BD = BC * sin(30⁰) = 5.7 * 0.5 = 2.9 м (высота фронтона)

Площадь треугольника АВС (площадь фронтона) = ½ * BC * AC * sin(30⁰) = ½ * 5.7 * 10 * 0.5 = 14


Площадь кровли = 2 * BC * 12 (в калькуляторе расстояние между осями 12) = 2 * 5.7 * 12 = 139 м2

Площадь наружных стен = (Высота цоколя + Высота 1-го этажа + Высота стен мансарды) * Длину наружных стен + Площадь двух фронтонов = (0.4 + 3 + 1.2) * 44 + 2 * 14 = 230 м2

Площадь внутренних стен = (Высота цоколя + Высота 1-го этажа) * Длина внутренних стен = (0.4 + 3) * 12 = 41м2 (Мансарда без внутренней несущей стены. Конек подпирают колоны, которые в расчете не участвуют из-за малого веса).

Общая площадь перекрытий = Длина дома * Ширина дома * (Кол-во этажей + 1) = 10 * 12 * (1 + 1) = 240 м2

Расчет нагрузок

Крыша

Город застройки: Санкт-Петербург

По карте снеговых районов РФ город Санкт-Петербург относится к 3 району. Расчетная снеговая нагрузка для данного района составляет 180 кг/м2.

Снеговая нагрузка на крышу = Расчетная снеговая нагрузка * Площадь кровли * Коэффициент (зависит от угла наклона крыши) = 180 * 139 * 1 = 25 020 кг = 25 т

(коэффициент, зависящий от уклона кровли. При 60 градусов снеговая нагрузка не учитывается. До 30 градусов коэфф = 1, от 31-59 градусов коэфф. рассчитывается интерполяцией)

Масса кровли = Площадь кровли * Масса материала кровли = 139 * 30 = 4 170 кг = 4 т

Общая нагрузка на стены чердака = Снеговая нагрузка на крышу + Масса кровли = 25 + 4 = 29 т

Важно! Удельные нагрузки материалов показаны в конце данного примера.

Мансарда (чердак)

Масса наружных стен = (Площадь стен мансарды + Площадь стен фронтонов) * (Масса материала наружных стен + Масса материала фасада) = (1.2 * 44 + 28) * (210 + 130) = 27 472 кг = 27 т

Масса внутренних стен = 0

Масса чердачного перекрытия = Площадь чердачного перекрытия * Масса материала перекрытия = 10 * 12 * 350 = 42 000 кг = 42 т

Общая нагрузка на стены 1-го этажа = Общая нагрузка на стены чердака + Масса наружных стен мансарды + Масса чердачного перекрытия + Эксплуатационная нагрузка перекрытия = 29 + 27 + 42 + 23 = 121 т

1 этаж

Масса наружных стен 1-го этажа = Площадь наружных стен * (Масса материала наружных стен + Масса материала фасада) = 3 *44 * (210 + 130) = 44 880 кг = 45 т

Масса внутренних стен 1-го этажа = Площадь внутренних стен * Масса материала внутренних стен = 3 * 12 * 160 = 5 760кг = 6 т

Масса перекрытия цоколя = Площадь перекрытия * Масса материала перекрытия = 10 * 12 * 350 = 42 000 кг = 42 т

Эксплуатационная нагрузка перекрытия = Расчетная эксплуатационная нагрузка * Площадь перекрытия = 195 * 120 = 23 400 кг = 23 т

Общая нагрузка на стены 1-го этажа = Общая нагрузка на стены 1-го этажа + Масса наружных стен 1-го этажа + Масса внутренних стен 1-го этажа + Масса перекрытия цоколя + Эксплуатационная нагрузка перекрытия = 121 + 45 + 6 + 42 + 23 = 237 т

Цоколь

Масса цоколя = Площадь цоколя * Масса материала цоколя = 0.4 * (44 + 12) * 1330 = 29 792 кг = 30 т

Общая нагрузка на фундамент = Общая нагрузка на стены 1-го этажа + Масса цоколя = 237 + 30 = 267 т

Вес дома с учетом нагрузок

Общая нагрузка на фундамент с учетом коэффициента запаса = 267 *1.3 = 347 т

Погонный вес дома при равномерно распределенной нагрузке на фундамент = Общая нагрузка на фундамент с учетом коэффициента запаса / Общая длина стен = 347 / 56 = 6,2 т/м.п. = 62 кН/м

При выборе расчета нагрузок по несущим стенам (пятистенок – 2 наружных несущих + 1 внутренняя несущая) получились следующие результаты:

Погонный вес наружных несущих стен (оси А и Г в калькуляторе) = Площадь 1-ой наружной несущей стены цоколя * Масса материал стены цоколя + Площадь 1-ой наружной несущей стены * (Масса материала стены + Масса материала фасада) + ¼ * Общая нагрузка на стены чердака + ¼ * (Масса материала чердачного перекрытия + Эксплуатационная нагрузка чердачного перекрытия) + ¼ * Общая нагрузка на стены чердака + ¼ * (Масса материала перекрытия цоколя + Эксплуатационная нагрузка перекрытия цоколя) = (0.4 * 12 * 1.33) + (3 + 1.2) * 12 * (0.210 + 0.130) + ¼ * 29 + ¼ * (42 + 23) + + ¼ * (42 + 23) = 6.4 + 17.2 + 7.25 + 16.25 + 16.25 = 63т = 5.2 т/м.п. = 52 кН