Длительно допустимые токовые нагрузки для кабелей и проводов. Факторы, влияющие на последствия поражения электрическим током Допустимые токи и напряжения

Сила тока, проходящего через тело человека, является основным фактором, который предопределяет последствия поражения. Различные по величине токи производят и разное влияние на организм человека

Различают три основных пороговые значения силы тока:

Пороговый ощутимый ток - наименьшее значение электрического тока, вызывающего при прохождении через организм человека ощутимые раздражения;

Пороговый невидпускаючий ток - наименьшее значение электрического тока, которое вызывает судорожные сокращения мышц руки, в которой зажат проводник, делает невозможным самостоятельное освобождение человека от действия й тока

Пороговый фибриляцийний (смертельно опасен) ток - наименьшее значение электрического тока, вызывающего при прохождении через тело человека фибрилляцию сердца

В таблице 71 приведены пороговые значения силы тока при его прохождении через тело человека путем"рука - рука"или"рука - ноги"

Ток (переменный и постоянный) более 5. А вызывает мгновенную остановку сердца, минуя состояние фибрилляции

Таблица 71. Пороговые значения переменного и постоянного тока

Чем выше значение напряжения, тем больше опасность поражения электрическим током. Условно безопасной для жизни человека принято считать напряжение не превышает 42. В (в Украине такое напряжение в зависимости от условий р работы и среды составляет 36 и 12. В), при которой не должен произойти пробой кожи человека, что приводит к резкому уменьшению общего сопротивления ее"тел; тіла.

Электрическое сопротивление тела человека зависит, в основном, от состояния кожи и центральной нервной системы. Для расчетов сопротивление тела человека условно принимают равным. Я - 1 кОм. При увлажнении, загрязнении и по ошкодженни кожи (потоотделения, порезы, царапины и т.п.), увеличении приложенного напряжения, площади контакта, частоты тока и времени его действия сопротивление тела человека уменьшается до определенного минимального значения (0,5-0,7 кОмм).

Вид и частота тока, проходящего через тело человека, также влияют на последствия поражения. Постоянный ток примерно в 4-5 раз безопаснее переменный. Однако частота переменного тока также приводит на аслидкы поражения. Так, наиболее опасным считается переменный ток частотой 20-100. Гц. При частоте, меньшей чем 20 или превышающим 100. Гц, опасность поражения током заметно уменьшается ток частотой п онад 500 кГц не может смертельно поразить человека, однако очень часто вызывает ожогопіки.

Путь прохождения тока через тело человека? возможных путей прохождения тока через тело человека (петель тока), их характеристики приведены в табл 72. Как видно из таблицы, наибольшую опасность представляет путь"голова - руки"(при нем доля пот ерпилих, что теряли сознание, составляет 92%), за ним идет -"голова - ноги", затем -"правая рука - ноги", а наименьшую опасность представляет путь"нога - ногаезпеку становить шлях "нога - нога".

Таблица 72. Характеристика наиболее распространенных путей прохождения тока через тело человека

Путь тока

Частота возникновения данного

пути тока,%

Доля пострадавших, которые теряли

сознание в течение действия

Значение тока, проходящего через сердце,% от общего

тока, проходящего через тело

Рука - рука

Правая рука - ноги

Левая рука - ноги

Нога - нога

Председатель - ноги

Председатель - руки

Допустимые значения токов и напряжений

Напряжение прикосновения - это напряжение между двумя точками электрической цепи, к которым одновременно прикасается человек

Предельно допустимые значения напряжения прикосновения и силы тока для нормального (безаварийного) и аварийного режимов электроустановок при прохождении тока через тело человека путем"рука - рука"или"р рука - ноги"регламентируются с помощью. ГОСТ 121038-82 (табл. 73 12.1.038-82 (табл. 7.3).

При выполнении работы в условиях высокой температуры (более 25 °. С) и относительной влажности воздуха (более 75%) значения табл 73 необходимо уменьшить в три раза

Современная жизнь полна разнообразием бытовых приборов и устройств, которые существенно облегчают нам быт, делают его все более комфортным, но одновременно появляется целый комплекс опасных, вредных факторов: электромагнитные поля различных частот, повышенный уровень радиации, шумы, вибрации, опасности механического травмирования, наличие токсичных веществ, а так же самое главное – электрический ток.

Электрическим током называется упорядоченное движение электрических частиц. На человека электрический ток оказывает термическое (нагревание тканей при протекании по ним электрического тока), электролитическое (разложение крови и других жидкостей организма), биологическое (возбуждение живых тканей организма, сопровождается спазмом мышц) действия.

При действии на человека электрического тока возникают электротравмы: электрические ожоги, электрические знаки, металлизация кожи, механические повреждения, ослепление светом электрической дуги (электроофтальмия), электрический удар, электрический шок .

Электрический ожог – это повреждения поверхности тела или внутренних органов под действием электрической дуги или больших токов, проходящих через тело человека. Ожоги бывают двух видов: токовый (или контактный) и дуговой.

Токовый ожог обусловлен прохождением тока непосредственно через тело человека в результате прикосновений к токоведущей части. Токовый ожог – следствие преобразования электрической энергии в тепловую; как правило, это ожог кожи, так как кожа человека обладает во много раз большим электрическим сопротивлением, чем другие ткани тела.

Токовые ожоги возникают при работе на электроустановках относительно небольшого напряжения (не выше 1-2 кВ) и является в большинстве случаев ожогами I или II степени; впрочем, иногда возникают и тяжелые ожоги.

При напряжениях более высоких между токоведущей частью и телом человека или между токоведущими частями образуется электрическая дуга, которая и вызывает возникновение ожога другого вида – дугового.

Дуговой ожог обусловлен действием на тело электрической дуги, обладающей высокой температурой (свыше 3500 С) и большой энергией. Такой ожог возникает обычно при электроустановках высокого напряжения и носит тяжелый характер – III или IV степени.

Электрические знаки – это пятна серого и бледно-желто цвета, ушибы, царапины на коже человека, которые подвергались действию тока. Сила знака соответствует силе токоведущей части, которой коснулся человек. В большинстве случаев лечение электрических знаков заканчивается благополучно, а пораженное место полностью восстанавливается.

Металлизация кожи – проникновение в верхние слои кожи мельчайших частиц металла, расплавившегося под действием электрической дуги. В пораженном месте кожа становится жесткой, шероховатой и приобретает окраску металла (например, зеленую – от соприкосновения с медью). Работа, связанная с вероятностью возникновения электрической дуги, следует делать в очках, а одежда работника должна быть застегнута на все пуговицы.

Механические повреждения возникает в результате механического движения при непроизвольном судорожном сокращении мышц и требуют долгого лечения.

Электроофтальмия – это воспаление наружных оболочек глаз, возникающее под воздействием мощного потока ультрафиолетовых лучей. Такое облучение возможно при образовании электрической дуги (короткое замыкание), которая интенсивно излучает не только видимый свет, но и ультрафиолетовые и инфракрасные лучи.

Электрический удар – это возбуждение живых тканей организма проходящим через них электрическим током, сопровождающееся непроизвольными судорожными сокращениями мышц. Степень отрицательного воздействия этих явлений на организм может быть различна. Электрический удар может привести к нарушению и даже полному прекращению деятельности жизненно важных органов – легких и сердца, а значит, и к гибели организма. Внешних местных повреждений человек при этом может и не иметь.

В зависимости от исхода поражения электрические удары могут быть условно разделены на четыре степени, из которых каждая характеризуется определенными проявлениями:

I – судороги без потери сознания;

II – судороги с потерей сознания, но с сохранившимися дыханием и работой сердца;

III – потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе);

IV – клиническая смерть.

Причинами смерти от электрического тока могут быть прекращение работы сердца, прекращение дыхания и электрический шок.

Работа сердца может прекратиться в результате или прямого воздействия тока на мышцу сердца, или рефлекторного действия, когда сердце не лежит на пути тока. В обоих случаях может произойти остановка сердца или наступить его фибрилляция, т.е. беспорядочное сокращение и расслабление мышечных волокон сердца. Фибрилляция обычно продолжается очень недолго и сменяется полной остановкой сердца. Если сразу же не оказана первая помощь, то наступает клиническая смерть.

Прекращение дыхания вызывается непосредственным или рефлекторным действием тока на мышцы грудной клетки, участвующие в процессе дыхания.

Электрический шок – своеобразная реакция нервной системы в ответ на сильное раздражение электрическим током. Проявляется расстройством кровообращения, дыхания. Шок может длиться от нескольких десятков минут до суток после чего организм гибнет.

Основным фактором, обусловливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

Безопасным считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не более 50 мкА (переменный ток 50 Гц) и 100 мкА постоянного тока;

Минимально ощутимый человеком переменный ток составляет около 0,6-1,5 мА (переменный ток 50 Гц) и 5-7 мА постоянного тока;

Пороговым неотпускающим называется минимальный ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это – 10-15 мА, для постоянного – 50-80 мА;

Фибрилляционным порогом называется сила тока около 100 мА (50 Гц) и 300 мА постоянного тока, воздействие которого дольше 0,5 секунд с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

Постоянный ток является менее опасным, чем переменный. Практически безопасным для человека в сырых помещениях можно считать напряжение до 12 В, в сухих помещениях – до 36 В. Вероятность поражения человека электрическим током зависит от климатических условий в помещении (температуры, влажности), а также токопроводящей пыли, металлических конструкций, соединенных с землей, токопроводящего пола и т.д. Опасные зоны – лицо, ладонь, промежность. Опасные пути – рука-голова, рука-рука, две руки-две ноги.

Тяжесть поражения усиливают: алкогольное опьянение, утомление, истощение, хронические заболевания, старческий или детский возраст.

В соответствии с «Правилами устройства электроустановок потребителей» (ПУЭ) все помещения делят на три класса:

· без повышенной опасности – нежаркие (до +35°С), сухие (до 60%), непыльные, с нетокопроводящим полом, не загроможденные оборудованием;

· с повышенной опасностью – имеют, по крайней мере, один фактор повышенной опасности, т.е. жаркие или влажные (до 75%), пыльные, с токопроводящим полом и т.п.;

· особо опасные – имеют два или более факторов повышенной опасности или, по крайней мере, один фактор особый опасности, т.е. особую сырость (до 100%) или наличие химически активной среды.

Статическое электричество – это потенциальный запас электрической энергии, образующейся на оборудовании в результате трения, индукционного влияния сильных электрических разрядов. В помещениях с большим количеством пыли органического происхождения могут образоваться статические разряды (пожаро- и взрывоопасность), а также накапливаться на людях при пользовании бельем и одеждой из щелка, шерсти и искусственных волокон, при движении по ток непроводящему синтетическому покрытию пола, типа линолеума, ковролина и т.д.

Для защиты от поражения электрическим током при работе с электрооборудованием, включённым в сеть, необходимо использовать общие и индивидуальные электрозащитные средства .

К общим электрозащитным средствам относят: ограждение; заземление; зануление и отключение корпусов техники, которые могут быть под напряжением; применение безопасного напряжения 12-36 В; плакаты, вывешиваемые у опасных мест; автоматические воздушные выключатели (предостерегающие, запрещающие, напоминающие). Хорошее состояние изоляции электроустановок – одно из самых важных условий безопасности. Значение изоляции сети заключается в том, чтобы избежать возможности замыканий электропроводки возникновения очагов возгорания, а также уменьшить расходы электроэнергии из-за утечки тока. Защитное заземление, зануление или автоматическое отключение предназначены для снижения напряжения или полного отключения электроустановок, корпуса которой оказались под напряжением. Обычно применяют искусственные заземлители: специально забиваемые в землю металлические стержни, трубы, металлические полосы, горизонтально вкладываемые в землю. Для заземления возможно использовать металлические конструкции зданий, металлические трубы водопровода, соприкасающиеся с землей.

Индивидуальные защитные средства подразделяются на основные (изолирующие штанги всех видов; изолирующие клещи; указатели напряжения; электроизмерительные клещи; диэлектрические перчатки; ручной изолирующий инструмент) и дополнительные (диэлектрические галоши; диэлектрические ковры и изолирующие подставки; изолирующие колпаки, покрытия и накладки; лестницы приставные, стремянки изолирующие стеклопластиковые).

Схема 1. Алгоритм первой помощи при поражении электротоком

При оказании помощи сначала нужно освободить человека от действия электрического тока. Самое безопасное – быстро вывернуть пробки, если несчастный случай произошел в доме. Если по каким-либо причинам это сделать невозможно, то необходимо бросить себе под ноги резиновый коврик, доску или толстую ткань либо надеть на ноги резиновые сапоги или галоши; можно надеть на руки хозяйственные резиновые перчатки. Пострадавшего оттащить от провода, схватившись одной рукой за одежду. В зоне падения высоковольтного провода передвигаться необходимо мелкими шашками, не расставляя широко ноги. Можно также попытаться отодвинуть самого пострадавшего от источника тока либо отстранить от него источник. Сделать это нужно одной рукой, чтобы даже при получении удара ток не прошел через все тело того, кто оказывает помощь.

После отключения тока (освобождения пострадавшего) необходимо действовать в соответствие с представленным алгоритмом (схема 1).

Независимо от состояния пострадавшего, необходимо вызвать врача и до его приезда обеспечить полный покой и наблюдение за ним. Отсутствие тяжелых симптомов после поражения не означает, что в последующем состояние пострадавшего не ухудшится (паралич дыхания и остановка сердца иногда наступают не сразу,а в течение последующих 2-3 часов).

Вопросы для самоконтроля знаний

1. Дать определения понятий: «производственная среда», «опасное химическое вещество», «аварийно химически опасное вещество», «токсичность», «токсикант», «токсин», «токсический процесс», «вредное вещество, «резорбция», «депонирование», «элиминация», «механизм токсического действия», «световой поток», «сила света», «освещенность», «яркость», «механические колебания», «периодические колебания», «амплитуда колебаний», «период колебаний», «вибрация», «звук», «шум», «электромагнитное поле», «ионизирующее излучение», «изотопы», «радиоактивность», «активность», «период полураспада», «статическое электричество».

2. Классификация негативных факторов среды обитания человека и их краткая характеристика.

3. Техносфера – как среда обитания. Качественные изменения среды обитания.

4. Классификация потенциально опасных веществ. Понятие о ядах.

5. Пути поступления вредных веществ в организм и их характеристика. Депонирование вредных веществ. Элиминация. Фазы биотрансформации.

6. Классификация вредных веществ по классу опасности. Типы дей-ствия комбинированных ядов.

7. Механизм формирования и развития токсического процесса на разных уровнях биологической организации.

8. Освещенность. Ее качественные и количественные показатели. Ко-эффициент естественной освещенности.

9. Механические колебания. Их разновидности.

10. Основные характеристики и классификация вибрации. Понятие о вибрационной болезни.

11. Звук. Шум и его характеристики. Мероприятия борьбы с шумом.

12. Электромагнитные поля. Нормирования и мероприятия по защите от воздействия электромагнитных полей.

13. Инфракрасное (ИК) излучение. Его влияние на организм человека.

14. Ультрафиолетовое излучение. Его влияние на человека и использование в промышленности.

15. Ионизирующее излучение. Его виды и источники. Применение в промышленности и медицине.

16. Электрический ток. Воздействие на организм человека электрического тока. Электрические ожоги. Электрические знаки. Металлизация кожи. Механические повреждения. Электроофтальмия.

17. Электрический удар, электрический шок.

18. Классы помещений в соответствии с «Правилами устройства электроустановок потребителей». Понятие о статическом электричестве.

19. Общие и индивидуальные электрозащитные средства.

20. Алгоритм первой помощи при поражении электротоком.

Добавить сайт в закладки

Как действует электрический ток на человека?

Электрические травмы

Электрический ток поражает человека внезапно. Прохождение тока через тело человека вызывает элек­трические травмы различного характера: электрический удар, ожоги, электрические знаки-метки.

Электрическим ударом назы­вается поражение током, при котором возникает шок, т. е. свое­образная тяжелая реакция организма на сильный раздражи­тель - электрический ток.

Исход шока различен. В тяжелом случае шок сопровождается расстройством кровообращения и дыха­ния. Возможна фибрилляция сердца, т. е. вместо одновременного ритмичного (примерно 1 раз в секунду) сокращения сердечной мышцы возникает хаотическое подергивание отдельных ее воло­кон - фибрилл. Это прекращает нормальную работу сердца, кровоток останавливается, и может наступить смерть.

Поражение человека током при напряжении до 1000 В в большинстве слу­чаев сопровождается электрическим ударом.

Ожоги возникают при воздействии тока значительной вели­чины (около 1 А и более) или от электрической дуги. Так, при приближении к токоведущим частям напряжением выше 1000 В на недопустимо малое расстояние между токоведущей частью и телом человека появляется искровой разряд, а затем электриче­ская дуга, которая причиняет тяжелый ожог. При случайном контакте с токоведущей частью напряжением до 1000 В проходя­щий через тело человека ток нагревает ткани до 60-70°С. Это вызывает свертывание белка. Ожоги электрическим током излечиваются трудно. Они захватывают большую поверхность тела и проникают глубоко.

Электрические знаки (метки) - это омертвление кожи в виде мозоли желтого цвета с серой каймой в месте входа и выхода тока. Если поражение проникло глубоко, то ткани тела постепенно отмирают.

Характер воздействия переменного электрического тока в за­висимости от его величины приведен в табл. 1

Из табл. 1 следует, что опасным для человека является ток более 15 мА, при котором человек не может самостоятельно осво­бодиться. Ток в 50 мА вызывает тяжелое поражение. Ток в 100 мА, воздействующий более 1-2 с, является смертельно опасным.

Факторы, влияющие на исход поражения

Величина электри­ческого тока, проходящего через тело человека, а следовательно, исход поражения зависят от многих обстоятельств.

Наиболее опасным является переменный ток с частотой 50-500 Гц. Большинство людей сохраняют способность самостоя­тельно освободиться от токов такой частоты при очень малых его величинах (9-10 мА). Постоянный ток тоже опасен, но самостоятельно освободиться от него возможно при несколько больших величинах (20-25 мА).

Величина тока зависит от напряжения электроустановки и от сопротивлений всех элементов цепи, по которой протекает ток, в том числе от сопротивления тела человека. Сопротивление тела слагается из активного и емкостного сопротивлений кожи и вну­тренних органов. Сухая, неповрежденная кожа имеет сопротивле­ние около 100 000 Ом, влажная - около 1000 Ом, а сопротивле­ние внутренних тканей (при снятом роговом слое) составляет примерно 500-1000 Ом. Наименьшим сопротивлением обладает кожа лица и подмышечных впадин.

Сопротивление тела человека - величина нелинейная. Оно резко, непропорционально уменьшается при увеличении прило­женного к телу напряжения, увеличении времени воздействия тока, при неудовлетворительном физическом и психическом со­стоянии, при большом и плотном контакте с токоведущей частью и т. д. Из рис. 1 следует, что при увеличении приложенного к телу напряжения от 0 до 140 В сопротивление тела нелинейно падает от десятков тысяч до 800 Ом (кривая 1). Соответственно, ток, проходящий через тело, возрастает (кривая 2).

Сопротивление тела человека (Ом) приближенно определяют по формуле

Z чел = U пр / I чел

где U пр - падение напряжения на сопротивлении тела человека - В.

В расчетах по электробезопасности его (тоже приближенно) принимают равным:

Z чел = 1000 Ом

Наиболее опасен путь тока через сердце, мозг, легкие. Харак­терные пути: ладонь - ступни, ладонь - ладонь, ступня - ступня. Однако смертельное поражение возможно и при прохо­ждении тока по пути, который, казалось бы, не затрагивает жиз­ненно важные органы, например через голень к ступне. Это явле­ние объясняется тем, что ток в теле протекает по пути наимень­шего сопротивления (нервам, крови), а не по прямой - через ткани с большим сопротивлением (мышцы, жир).

Установлено, что исход поражения током зависит от физиче­ского и психического состояния человека. Если он голоден, утомлен, опьянен или не здоров, то вероятность тяжелого пора­жения возрастает. Женщины, подростки, мужчины со слабым здоровьем способны выдержать значительно меньшие токи (в пределах б мА), чем здоровые мужчи­ны (12-15 мА).

Длительность воздействия - один из основных факторов, влияющих на исход поражения. Цикл работы сердца равен при­мерно 1 с. В цикле имеется фаза Т, равная 0,1 с, когда мышца сердца расслаблена и оно наиболее уязвимо для тока: может возникнуть фибрилляция. Чем меньше время воздействия тока (менее 0,1 с), тем меньше вероятность фибрилляции. Продолжительное (несколько секунд) воздействие тока приводит к тяжелому исходу: сопротивление тела уменьшается, а ток поражения возрастает.

Механизм воздействия электрического тока на человека сло­жен. С одной стороны, в высоковольтных установках были слу­чаи, когда кратковременное (сотые доли секунды) воздействие тока в несколько ампер не приводило к смерти. С другой стороны, уста­новлено, что смертельный исход возможен при напряжении 12-36 В, когда воздействует ток в несколько миллиампер. Это про­исходит в результате прикосновения к токоведущей части наибо­лее уязвимой частью тела - тыльной стороной ладони, щекой, шеей, голенью, плечом.

Учитывая опасность электроустановок напряжением как до 1000, так и выше 1000 В, каждый работающий должен твердо помнить, что нельзя прикасаться к токоведущим частям незави­симо от того, под каким напряжением они находятся, нельзя близко приближаться к токоведущим частям в высоковольтных установках, нельзя без надобности прикасаться к металлическим конструкциям распределительных устройств, опорам линий элек­тропередачи, к корпусам оборудования, могущим оказаться под напряжением при замыкании на них токоведущих частей.

Замыкания на землю в электроустановках, как правило, от­ключаются основной релейной защитой за доли секунды. Поэтому устройства электробезопасности (заземления и др.) допускается рассчитывать, исходя из больших величин допустимого тока. В этом случае допустимым считается ток, не вызывающий фибрил­ляции у 99,5% подопытных животных, масса тела и сердца кото­рых близка к человеческим. Допустимые величины тока и напря­жений прикосновения, полученные при лабораторных исследо­ваниях, приведены в табл. 2

Из табл. 3-2 следует, что токи более 65 мА и напряжения более 65 В допускаются менее 1 с.

Для правильного проектирования способов и средств защиты лю­дей от поражения электрическим током необходимо знать допустимые уровни напряжений прикосновения и значений токов, протекающих че­рез тело человека.

Напряжением прикосновения называется напряжение между дву­мя точками цепи тока, которых одновременно касается человек. Предельно допустимые значения напряжений прикосновения U ПД и то­ков I ПД, про­текающих через тело человека по пути "рука – рука" или "рука – ноги" при нормальном (неаварийном) режиме электроустановки, согласно ГОСТ 12.1.038-82* приведены в табл. 1.

При аварийном режиме производственных и бытовых приборов и электроустановок напряжением до 1000 В с любым режимом нейтрали предельно допустимые значения U ПД и I ПД не должны превышать значе­ний, приведенных в табл. 2. Аварийный режим означает, что электроус­тановка неисправна, и могут возникнуть опасные ситуации, приводящие к электротравмам.

При продолжительности воздействия более 1 с величины U ПД и I ПД соответствуют отпускающим значениям для переменного и условно неболевым для постоянного токов.

Таблица 1

Предельно допустимые значения напряжений прикосновения и токов

в нормальном режиме работы электроустановки

Примечание. Напряжения прикосновения и токи для лиц, выпол­няющих работу в условиях высоких температур (выше 25 С) и влажно­сти (отно­сительная влажность более 75 %), должны быть уменьшены в 3 раза.

Таблица 2

Предельно допустимые значения напряжения прикосновения

и токов в аварийном режиме работы электроустановки

Продолжительность действия электриче­ского тока, с

Производственные

электроустановки

Бытовые приборы,

электроустановки

4. Электрическое сопротивление тела человека

Значение тока через тело человека сильно влияет на тяжесть элек­тро­травм. В свою очередь, сам ток согласно закону Ома определяется со­противлением тела человека и приложенным к нему напряжением, т.е. напряжением прикосновения.

Проводимость живых тканей обусловлена не только физическими свой­ствами, но и сложнейшими биохимическими и биофизическими процес­сами, присущими лишь живой материи. Поэтому сопротивление тела человека является комплексной переменной величиной, имеющей нели­нейную зависимость от множества факторов, в том числе от со­стояния кожи, окружающей среды, центральной нервной системы, фи­зиологиче­ских факторов. На практике под сопротивлением тела чело­века пони­мают модуль его комплексного сопротивления.

Электрическое сопротивление различных тканей и жидкостей тела человека не оди­наково: кожа, кости, жировая ткань, сухожилия имеют отно­си­тельно большое сопротивление, а мышечная ткань, кровь, лимфа, нервные волокна, спинной и головной мозг – малое сопротив­ле­ние.

Сопротивление тела человека, т.е. сопротивление между двумя электродами, наложенными на поверхность тела, в основном определя­ется сопротивлением кожи. Кожа состоит из двух основных слоев: на­ружного (эпидермис) и внутреннего (дер­ма).

Эпидермис можно условно представить состоящим из рогового и росткового слоев. Роговой слой состоит из мертвых ороговевших кле­ток, лишен кровеносных сосудов и нервов и поэтому является слоем неживой ткани. Толщина этого слоя колеблется в пределах 0,05 – 0,2 мм. В сухом и незагрязненном состоянии роговой слой можно рассмат­ривать как пористый диэлектрик, пронизанный множеством протоков сальных и потовых желез и обладающий большим удельным сопротивле­нием. Ростковый слой примыкает к роговому слою и состоит в основ­ном из живых клеток. Электрическое сопротивление этого слоя благо­даря наличию в нём отмирающих и находящихся на стадии ороговения клеток может в несколько раз превышать сопротивление внутреннего слоя кожи (дермы) и внутренних тканей организма, хотя по сравнению с сопротивлением рогового слоя оно невелико.

Дерма состоит из волокон соединитель­ной ткани, образующих густую, прочную, эластичную сетку. В этом слое находятся кровеносные и лимфатические сосуды, нервные оконча­ния, корни волос, а также потовые и сальные железы, выводные про­токи которых выходят на поверхность кожи, пронизывая эпидермис. Электрическое сопротивление дермы, являющейся живой тканью, неве­лико.

Полное сопротивление тела человека есть сумма сопротивлений тканей, расположенных на пути протекания тока. Основным физиоло­гическим фактором, определяющим величину полного сопротивления тела человека, является состояние кожного покрова в цепи тока. При сухой, чистой и неповрежденной коже сопротивление тела человека, измеренное при напряжении 15 - 20 В, колеблется от единиц до десят­ков кОм. Если на участке кожи, где прикладываются электроды, со­скоблить роговой слой, сопротивление тела упадет до 1 – 5 кОм, а при удалении всего эпидермиса – до 500 – 700 Ом. Если под электродами полностью удалить кожу, то будет измерено сопротивление внутренних тканей, которое составляет 300 – 500 Ом.

Для приближённого анализа процессов протекания тока по пути "рука – рука" через два одинаковых электрода может быть использован упрощённый вариант эквивалентной схемы цепи протекания электриче­ского тока через тело человека (рис. 1).

Рис. 1. Эквивалентная схема сопротивления тела человека

На рис. 1 обозначено: 1 – электроды; 2 – эпидермис; 3 – внутрен­ние ткани и органы тела человека, включая дерму; İ h – ток, протекаю­щий через тело человека; Ů h – напряжение, приложенное к электродам; R Н – активное сопротивление эпидермиса; C Н – ёмкость условного кон­денсатора, обкладками которого являются электрод и хорошо проводя­щие ток ткани тела человека, расположенные под эпидермисом, а ди­электриком – сам эпидермис; R ВН – активное сопротивление внутренних тканей, включая дерму.

Из схемы рис. 1 следует, что комплексное сопротивление тела человека определяется соотношением

где Z Н = (jС Н) -1 = -jХ Н – комплексное сопротивление емкости С Н;

Х Н – модуль Z Н; f , f – частота переменного тока.

В дальнейшем под сопротивлением тела человека будем подразу­мевать модуль его комплексного сопротивления:

. (1)

На высоких частотах (больше 50 кГц) Х Н =1/(C Н) << R ВН, и сопротивления R Н оказываются практически закороченными ма­лыми сопротивлениями емкостей C Н. Поэтому на высоких частотах со­противление тела человека z h в приближенно равно сопротивлению его внутренних тканей: R ВН z h в. (2)

При постоянном токе в установившемся режиме емкостные сопро­тивления являются бесконечно большими (при 
0 Х Н

). Поэтому сопротивление тела человека постоянному току

R h = 2R Н + R ВН. (3)

Из выражений (2) и (3) можно определить

R Н = (R h -z h в)/2. (4)

На основе выражений (1) – (4) можно получить формулу для вы­числения величины емкости C н:

, (5)

где z hf - модуль комплексного сопротивления тела на частоте f ;

C Н имеет размерность мкФ; z hf , R h и R ВН – кОм; f - кГц.

Выражения (2) – (5) позволяют определить параметры эквивалент­ной схемы (рис. 1) по результатам экспериментальных измерений.

Электрическое сопротивление тела человека зависит от ряда фак­торов. Повреждения рогового слоя кожи могут снизить сопротивление тела человека до величины его внутреннего сопротивления. Увлажнение кожи может понизить ее сопротивление на 30 – 50 %. Влага, попавшая на кожу, растворяет находящиеся на ее поверхности минеральные веще­ства и жирные кислоты, выведенные из организма вместе с потом и жи­ровыми выделениями, становится более электропроводной, улучшает контакт между кожей и электродами, проникает в выводные протоки потовых и жировых желез. При длительном увлажнении кожи ее на­ружный слой разрыхляется, насыщается влагой и его сопротивление может уменьшиться в ещё большей степени.

При кратковременном воздействии на человека теплового облуче­ния или повышенной температуры окружающей среды сопротивле­ние тела человека уменьшается за счёт рефлекторного расширения кро­веносных сосудов. При более длительном воздействии наступает пото­отделение, в результате чего сопротивление кожи уменьшается.

С увеличением площади электродов сопротивление наружного слоя кожи R Н уменьшается, емкость С Н увеличивается, а сопротивление тела человека уменьшается. При частотах свыше 20 кГц указанное влияние площади электродов практически утрачивается.

Сопротивление тела человека зависит также и от места приложе­ния электродов, что объясняется различной толщиной рогового слоя кожи, неравномерным распределением потовых желез на поверхности тела, неодинаковой степенью наполнения кровью сосудов кожи.

Прохождение тока через тело человека сопровождается местным нагревом кожи и раздражающим действием, что вызывает рефлекторное расширение сосудов кожи и, соответственно, усиленное снабжение ее кровью и повышенное потоотделение, что, в свою очередь, приводит к снижению сопротивления кожи в данном месте. При небольших напря­жениях (20 -30 В) за 1 – 2 минуты сопротивление кожи под электродами может понизиться на 10 – 40 % (в среднем на 25 %).

Повышение напряжения, приложенного к телу человека, вызывает уменьшение его сопротивления. При напряжениях в десятки вольт это происходит из-за рефлекторных реакций организма в ответ на раздра­жающее действие тока (усиление снабжения сосудов кожи кровью, по­тоотделение). При повышении напряжения до 100 В и выше происхо­дят сначала локальные, а затем и сплошные электрические пробои рого­вого слоя кожи под электродами. По этой причине при напряжениях около 200 В и выше сопротивление тела человека практически равно сопротивлению внутренних тканей R ВН.

При ориентировочной оценке опасности поражения электрическим током сопротивление тела человека принимают равным 1 кОм (R h = 1 кОм). Точное значение расчетных сопротивлений при разработке, рас­чёте и проверке защитных мер в электроустановках выбирается со­гласно ГОСТ 12.038-82*.

Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4-1.3.11. Они приняты для температур: жил +65, окружающего воздуха +25 и земли + 15°С.

При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются.

Допустимые длительные токи для проводов и кабелей, проложенных в коробах, а также в лотках пучками, должны приниматься: для проводов - по табл. 1.3.4 и 1.3.5 как для проводов, проложенных в трубах, для кабелей - по табл. 1.3.6-1.3.8 как для кабелей, проложенных в воздухе. При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по табл. 1.3.4 и 1.3.5 как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов 0,68 для 5 и 6; 0,63 для 7-9 и 0,6 для 10-12 проводников.

Для проводов вторичных цепей снижающие коэффициенты не вводятся.

Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами

Ток, А, для проводов, проложенных в одной трубе

открыто двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
0,5 11 - - - - -
0,75 15 - - - - -
1 17 16 15 14 15 14
1,2 20 18 16 15 16 14,5
1,5 23 19 17 16 18 15
2 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
16 100 85 80 75 80 70
25 140 115 100 90 100 85
35 170 135 125 115 125 100
50 215 185 170 150 160 135
70 270 225 210 185 195 175
95 330 275 255 225 245 215
120 385 315 290 260 295 250
150 440 360 330 - - -
185 510 - - - - -
240 605 - - - - -
300 695 - - - - -
400 830 - - - - -

Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Сечение токопроводящейжилы, мм 2

Ток, А, для проводов, проложенных

в одной трубе

открыто двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
2 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38
16 75 60 60 55 60 55
25 105 85 80 70 75 65
35 130 100 95 85 95 75
50 165 140 130 120 125 105
70 210 175 165 140 150 135
95 255 215 200 175 190 165
120 295 245 220 200 230 190
150 340 275 255 - - -
185 390 - - - - -
240 465 - - - - -
300 535 - - - - -
400 645 - - - - -

Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных

Ток *, А, для проводов и кабелей

одножильных

двухжильных

трехжильных

при прокладке

в воздухе в воздухе в земле в воздухе в земле
1,5 23 19 33 19 27
2,5 30 27 44 25 38
4 41 38 55 35 49
6 50 50 70 42 60
10 80 70 105 55 90
16 100 90 135 75 115
25 140 115 175 95 150
35 170 140 210 120 180
50 215 175 265 145 225
70 270 215 320 180 275
95 325 260 385 220 330
120 385 300 445 260 385
150 440 350 505 305 435
185 510 405 570 350 500
240 605 - - - -

* Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.

Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Сечение токопроводящей жилы, мм2

Ток, А, для кабелей

одножильных

двухжильных

трехжильных

при прокладке

в воздухе в воздухе в земле в воздухе в земле
2,5 23 21 34 19 29
4 31 29 42 27 38
6 38 38 55 32 46
10 60 55 80 42 70
16 75 70 105 60 90
25 105 90 135 75 115
35 130 105 160 90 140
50 165 135 205 110 175
70 210 165 245 140 210
95 250 200 295 170 255
120 295 230 340 200 295
150 340 270 390 235 335
185 390 310 440 270 385
240 465 - - - -

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по табл. 1.3.7, как для трехжильных кабелей, но с коэффициентом 0,92.

Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами

Сечение токопроводящей жилы, мм2

Ток *, А, для шнуров, проводов и кабелей

одножильных двухжильных трехжильных
0,5 - 12 -
0,75 - 16 14
1,0 - 18 16
1,5 - 23 20
2,5 40 33 28
4 50 43 36
6 . 65 55 45
10 90 75 60
16 120 95 80
25 160 125 105
35 190 150 130
50 235 185 160
70 290 235 200

________________

* Токи относятся к шнурам, проводам и кабелям с нулевой жилой и без нее.

Таблица 1.3.9. Допустимый длительный ток для переносных шланговых с медными жилами с резиновой изоляцией кабелей для торфопредприятий

__________________

Таблица 1.3.10. Допустимый длительный ток для шланговых с медными жилами с резиновой изоляцией кабелей для передвижных электроприемников

__________________

* Токи относятся к кабелям с нулевой жилой и без нее.

Таблица 1.3.11. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией для электрифицированного транспорта 1,3 и 4 кВ

Сечение токопроводящей жилы, мм 2 Ток, А Сечение токопроводящей жилы, мм 2 Ток, А Сечение токопроводящей жилы, мм 2 Ток, А
1 20 16 115 120 390
1,5 25 25 150 150 445
2,5 40 35 185 185 505
4 50 50 230 240 590
6 65 70 285 300 670
10 90 95 340 350 745

Таблица 1.3.12. Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах

Способ прокладки

Количество проложенных проводов и кабелей

Снижающий коэффициент для проводов, питающих группы электро приемников и отдельные приемники с коэффициентом использования более 0,7

одножильных многожильных отдельные электроприемники с коэффициентом использования до 0,7 группы электроприемников и отдельные приемники с коэффициентом использования более 0,7

Многослойно и пучками. . .

- До 4 1,0 -
2 5-6 0,85 -
3-9 7-9 0,75 -
10-11 10-11 0,7 -
12-14 12-14 0,65 -
15-18 15-18 0,6 -

Однослойно

2-4 2-4 - 0,67
5 5 - 0,6

1.3.11

Допустимые длительные токи для проводов, проложенных в лотках, при однорядной прокладке (не в пучках) следует принимать, как для проводов, проложенных в воздухе.

Допустимые длительные токи для проводов и кабелей, прокладываемых в коробах, следует принимать по табл. 1.3.4-1.3.7 как для одиночных проводов и кабелей, проложенных открыто (в воздухе), с применением снижающих коэффициентов, указанных в табл. 1.3.12.

При выборе снижающих коэффициентов контрольные и резервные провода и кабели не учитываются.