График и свойства функции у = sin x. Тригонометрические функции числового аргумента. Свойства и графики тригонометрических функций Решение примеров на тригонометрические функции числового аргумента

Определение1: Числовая функция, заданная формулой y=sin x называется синусом.

Данная кривая имеет название – синусоида.

Свойства функции y=sin x

2. Область значения функции: E(y)=[-1; 1]

3. Четность функции:

y=sin x – нечетная,.

4. Периодичность: sin(x+2πn)=sin x, где n – целое число.

Данная функция через определенный промежуток принимает одинаковые значения. Такое свойство функции называют периодичностью. Промежуток – периодом функции.

Для функции y=sin x период составляет 2π.

Функция y=sin x – периодическая, с периодом Т=2πn, n – целое число.

Наименьший положительный период Т=2π.

Математически это можно записать так: sin(x+2πn)=sin x, где n – целое число.

Определение2: Числовая функция, заданная формулой y=cosx называется косинусом.

Свойства функции y=cos x

1. Область определения функции: D(y)=R

2. Область значения функции: E(y)=[-1;1]

3. Четность функции:

y=cos x –четная.

4. Периодичность: cos(x+2πn)=cos x, где n – целое число.

Функция y=cos x – периодическая, с периодом Т=2π.

Определение 3: Числовая функция, заданная формулой y=tg x, называется тангенсом.


Свойства функции y=tg x

1. Область определения функции: D(y) - все действительные числа, кроме π/2+πk, k – целое число. Потому что в этих точках тангенс не определен.

3. Четность функции:

y=tg x – нечетная.

4. Периодичность: tg(x+πk)=tg x, где k – целое число.

Функция y=tg x – периодическая с периодом π.

Определение 4: Числовая функция, заданная формулой y=ctg x, называется котангенсом.

Свойства функции y=ctg x

1. Область определения функции: D(y) - все действительные числа, кроме πk, k– целое число. Потому что в этих точках котангенс не определен.

2. Область значения функции: E(y)=R.

Тригонометрические функции числового аргумента.

Тригонометрические функции числового аргумента t – это функции вида y = cos t,
y = sin t, y = tg t, y = ctg t.

С помощью этих формул через известное значение одной тригонометрической функции можно найти неизвестные значения других тригонометрических функций.

Пояснения .

1) Возьмем формулу cos 2 t + sin 2 t = 1 и выведем с ее помощью новую формулу.

Для этого разделим обе части формулы на cos 2 t (при t ≠ 0, то есть t ≠ π/2 + πk ). Итак:

cos 2 t sin 2 t 1
--- + --- = ---
cos 2 t cos 2 t cos 2 t

Первое слагаемое равно 1. Мы знаем, что отношение синуса к конисусу – это тангенс, значит, второе слагаемое равно tg 2 t. В результате мы получаем новую (и уже известную вам) формулу:

2) Теперь разделим cos 2 t + sin 2 t = 1 на sin 2 t (при t ≠ πk ):

cos 2 t sin 2 t 1
--- + --- = ---, где t ≠ πk + πk , k – целое число
sin 2 t sin 2 t sin 2 t

Отношение косинуса к синусу – это котангенс. Значит:


Зная элементарные основы математики и выучив основные формулы тригонометрии, вы легко сможете самостоятельно выводить большинство остальных тригонометрических тождеств. И это даже лучше, чем просто зазубривать их: выученное наизусть быстро забывается, а понятое запоминается надолго, если не навсегда. К примеру, необязательно зазубривать, чему равна сумма единицы и квадрата тангенса. Забыли – можно легко вспомнить, если вы знаете самую простую вещь: тангенс – это отношение синуса к косинусу. Примените вдобавок простое правило сложения дробей с разными знаменателями – и получите результат:

sin 2 t 1 sin 2 t cos 2 t + sin 2 t 1
1 + tg 2 t = 1 + --- = - + --- = ------ = ---
cos 2 t 1 cos 2 t cos 2 t cos 2 t

Точно так же легко можно найти сумму единицы и квадрата котангенса, как и многие другие тождества.

Тригонометрические функции углового аргумента.

В функциях у = cos t , у = sin t , у = tg t , у = ctg t переменная t может быть не только числовым аргументом. Ее можно считать и мерой угла – то есть угловым аргументом.

С помощью числовой окружности и системы координат можно легко найти синус, косинус, тангенс, котангенс любого угла. Для этого должны быть соблюдены два важных условия:
1) вершиной угла должен быть центр окружности, который одновременно является центром оси координат;

2) одной из сторон угла должен быть положительный луч оси x .

В этом случае ордината точки, в которой пересекаются окружность и вторая сторона угла, является синусом этого угла, а абсцисса этой точки – косинусом данного угла.

Пояснение . Нарисуем угол, одна сторона которого – положительный луч оси x , а вторая сторона выходит из начала оси координат (и из центра окружности) под углом 30º (см.рисунок). Тогда точка пересечения второй стороны с окружностью соответствует π/6. Нам известны ордината и абсцисса этой точки. Они же являются косинусом и синусом нашего угла:

√3 1
--; --
2 2

А зная синус и косинус угла, вы уже легко сможете найти его тангенс и котангенс.

Таким образом, числовая окружность, расположенная в системе координат, является удобным способом найти синус, косинус, тангенс или котангенс угла.

Но есть более простой способ. Можно и не рисовать окружность и систему координат. Можно воспользоваться простыми и удобными формулами:

Пример : найти синус и косинус угла, равного 60º.

Решение :

π · 60 π √3
sin 60º = sin --- = sin -- = --
180 3 2

π 1
cos 60º = cos -- = -
3 2

Пояснение : мы выяснили, что синус и косинус угла 60º соответствуют значениям точки окружности π/3. Далее просто находим в таблице значения этой точки – и таким образом решаем наш пример. Таблица синусов и косинусов основных точек числовой окружности – в предыдущем разделе и на странице «Таблицы».






































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  1. Выработка умений и навыков применения тригонометрических формул для упрощения тригонометрических выражений.
  2. Реализация принципа деятельностного подхода в обучении учащихся, развитие коммуникабельности и толерантности учащихся, умения слушать и слышать других и высказывать своё мнение.
  3. Повышение интереса учащихся к математике.

Тип урока: тренировочный.

Вид урока: урок отработки навыков и умений.

Форма обучения: групповая.

Тип групп : группа, сидящая вместе. Ученики разного уровня обученности, информированности по данному предмету, совместимые учащиеся, что позволяет им взаимно дополнять и обогащать друг друга.

Оборудование: доска; мел; таблица «Тригонометр»; маршрутные листы; карточки с буквами (А, В, С.) для выполнения теста; таблички с названиями экипажей; оценочные листы; таблицы с названиями этапов пути; магниты, мультимедийный комплекс.

Ход урока

Ученики сидят по группам: 4 группы по 5-6 человек. Каждая группа – это экипаж машины с названиями, соответствующими названиям тригонометрических функций, во главе с рулевым. Каждому экипажу выдаётся маршрутный лист и определяется цель: пройти заданный маршрут успешно, без ошибок. Урок сопровождается презентацией.

I. Организационный момент.

Учитель сообщает тему урока, цель урока, ход урока, план работы групп, роль рулевых.

Вступительное слово учителя:

Ребята! Запишите число и тему урока:«Тригонометрические функции числового аргумента».

Сегодня на уроке мы буде учиться:

  1. Вычислять значения тригонометрических функций;
  2. Упрощать тригонометрические выражения.

Для этого нужно знать:

  1. Определения тригонометрических функций
  2. Тригонометрические соотношения (формулы).

Известно давно, что одна голова хорошо, а две лучше, поэтому вы сегодня работаете в группах. Известно также, что дорогу осилит идущий. Но мы живём в век скоростей и время дорого, а значит можно сказать так: «Дорогу осилит едущий», поэтому сегодня урок у нас пройдёт в виде игры «Математическое ралли». Каждая группа – это экипаж машины, во главе с рулевым.

Цель игры:

  • успешно пройти маршрут каждому экипажу;
  • выявить чемпионов ралли.

Название экипажей соответствует марке машины, на которой вы совершаете пробег.

Представляются экипажи и их рулевые:

  • Экипаж – «синус»
  • Экипаж – «косинус»
  • Экипаж – «тангенс»
  • Экипаж – «котангенс»

Девиз гонки: «Торопись медленно!»

Вам предстоит совершить пробег по «математической местности» со множеством препятствий.

Маршрутные листы каждому экипажу выданы. Преодолеть препятствия смогут экипажи, которые знают определения и тригонометрические формулы.

Во время пробега каждый рулевой руководит экипажем, помогая, и оценивая вклад каждого члена экипажа в преодоление маршрута в виде «плюсов» и «минусов» в оценочном листе. За каждый правильный ответ группа получает «+», неправильный «-».

Вам предстоит преодолеть следующие этапы пути:

I этап. ПДД (правила дорожного движения).
II этап. Техосмотр.
III этап. Гонка по пересечённой местности.
IV этап. Внезапная остановка – авария.
V этап. Привал.
VI этап. Финиш.
VII этап. Итоги.

И так в путь!

I этап. ПДД (правила дорожного движения).

1) В каждом экипаже рулевые раздают каждому члену экипажа билеты с теоретическими вопросами:

  1. Расскажите определение синуса числа t и его знаки по четвертям.
  2. Расскажите определение косинуса числа t и его знаки по четвертям.
  3. Назовите наименьшее и наибольшее значения sin t и cos t.
  4. Расскажите определение тангенса числа t и его знаки по четвертям.
  5. Расскажите определение котангенса числа t и его знаки по четвертям.
  6. Расскажите, как найти значение функции sin t по известному числу t.

2) Соберите «рассыпавшиеся» формулы. На тайной доске таблица (см. ниже). Экипажи должны привести в соответствие формулы. Ответ каждая команда записывает на доске в виде строки соответствующих букв (парами).

а tg 2 t + 1 е 1
в tg t ж cos t / sin t, t ≠ к, кZ.
д sin 2 t + cos 2 t и 1/ sin 2 t, t ≠ к, кZ.
ё ctg t к 1,t ≠ к / 2, кZ.
з 1 + ctg 2 t г sin t /cos t, t ≠ /2 + к, кZ.
й tg t ∙ctg t б 1/ cos 2 t, t ≠ /2 + к, кZ.

Ответ: аб, вг, де, ёж, зи, йк.

II этап. Техосмотр.

Устная работа: тест.

На тайной доске написано: задание: упростить выражение.

Рядом записаны варианты ответов. Экипажи определяют правильные ответы за1 мин. и поднимают соответствующий набор букв.

Выражение Варианты ответов
А В С
1. 1 – cos 2 t cos 2 t - sin 2 t sin 2 t
2. sin 2 t – 1 cos 2 t - cos 2 t 2 cos 2 t
3. (cos t – 1)(1+ cos t) -sin 2 t (1+ cos t) 2 (cos t – 1) 2

Ответ: С В А.

III этап. Гонка по пересечённой местности.

3 минуты экипажам на совещание по решению задания, а далее представители экипажей пишут решение на доске. Когда представители экипажей закончат записывать решение первого задания, все ученики (вместе с учителем) проверяют правильность и рациональность решений и записывают в тетрадь. Рулевые оценивают вклад каждого члена экипажа знаками « + » и « – » в оценочных листах.

Задания из учебника:

  • Экипаж – «синус»: № 118 г;
  • Экипаж – «косинус»: № 122 а;
  • Экипаж – «тангенс»: № 123 г;
  • Экипаж – «котангенс»: № 125 г.

IV этап. Внезапная остановка – авария.

Ваш автомобиль сломался. Необходимо устранить неисправность вашего автомобиля.

Для каждого экипажа приведены высказывания, но в них допущены ошибки. Найдите эти ошибки и объясните, почему они были допущены. В высказываниях используются тригонометрические функции, соответствующие маркам ваших машин.

V этап. Привал.

Вы устали и должны отдохнуть. Пока экипаж отдыхает рулевые подводят предварительные итоги: считают «плюсы» и «минусы» у членов экипажа и в целом у экипажа.

Для учеников:

3 и более «+» – оценка «5»;
2 «+» – оценка «4»;
1 «+» – оценка «3».

Для экипажей: «+» и «-» взаимно уничтожаются. Считаются только оставшиеся знаки.

Отгадайте шараду .

Из чисел вы мой первый слог возьмите,
Второй – из слова «гордецы».
А третьим лошадей вы погоните,
Четвёртым будет блеянье овцы.
Мой пятый слог такой же, как и первый,
Последней буквой в алфавите является шестой,
А если отгадаешь ты всё верно,
То в математике раздел получишь ты такой.
(Три-го-но-ме-три-я)

Слово «тригонометрия» (от греческих слов «тригонон» – треугольник и «метрео» – измеряю) означает «измерение треугольников». Возникновение тригонометрии связано с развитием географии и астрономии – науки о движении небесных тел, о строении и развитии Вселенной.

В результате произведённых астрономических наблюдений возникла необходимость определения положения светил, вычисления расстояний и углов. Так как некоторые расстояния, например, от Земли до других планет, нельзя было измерить непосредственно, то учёные стали разрабатывать приёмы нахождения взаимосвязей между сторонами и углами треугольника, у которого две вершины расположены на земле, а третью представляет планета или звезда. Такие соотношения можно вывести, изучая различные треугольники и их свойства. Вот почему астрономические вычисления привели к решению (т. е. нахождению элементов) треугольника. Этим и занимается тригонометрия.

Зачатки тригонометрии были обнаружены в древнем Вавилоне. Вавилонские учёные умели предсказывать солнечные и лунные затмения. Некоторые сведения тригонометрического характера встречаются в старинных памятниках других народов древности.

VI этап. Финиш.

Чтобы успешно пересечь линию финиша осталось поднапрячься и совершить «рывок». Очень важно в тригонометрии уметь быстро определять значения sin t, cost, tgt, ctg t, где 0 ≤ t ≤ . Учебники закрыть.

Экипажи поочерёдно называют значения функций sin t, cost, tgt, ctg t , если:

VII этап. Итоги.

Итоги игры.

Рулевые сдают оценочные листы. Определяется экипаж, ставший чемпионом «Математического ралли» и характеризуется работа остальных групп. Далее называются фамилии тех, кто получил оценки «5» и «4».

Итоги урока.

– Ребята! Чему вы сегодня научились на уроке? (упрощать тригонометрические выражения; находить значения тригонометрических функций). А что для этого нужно знать?

  • определения и свойства sin t, cos t, tg t, ctg t;
  • соотношения, связывающие значения различных тригонометрических функций;
  • знаки тригонометрических функций по четвертям числовой окружности.
  • значения тригонометрических функций первой четверти числовой окружности.

– Я думаю, что вы поняли, что формулы нужно хорошо знать, чтобы их правильно применять. Вы также поняли, что тригонометрия очень важная часть математики, так как она применяется в других науках: астрономии, географии, физике и др.

Домашнее задание:

  • для учеников получивших «5» и «4»: §6, №128а, 130а, 134а.
  • для остальных учеников: §6, №119г, №120г, №121г.
В настоящей главе мы введем тригонометрические функции числового аргумента. Многие вопросы математики, механики, физики и других наук приводят к тригонометрическим функциям не только угла (дуги), но и аргументов совершенно различной природы (длина, время, температура и т. д.). До сих пор под аргументом тригонометрической функции понимался угол, измеренный в градусах или радианах. Теперь мы обобщим понятия синуса, косинуса, тангенса, котангенса, секанса и косеканса, введя их как функции числового аргумента.

Определение. Тригонометрическими функциями числового аргумента называются одноименные тригонометрические функции угла, равного радианам.

Поясним это определение на конкретных примерах.

Пример 1. Вычислим значенйе . Здесь под мы понимаем отвлеченное иррациональное число. Согласно определению . Итак, .

Пример 2. Вычислим значение . Здесь под 1,5 мы понимаем отвлеченное число. Согласно определению (см. приложение II).

Пример 3. Вычислим значение Аналогично предыдущему получаем (см. приложение II).

Итак, в дальнейшем под аргументом тригонометрических функций мы будем понимать угол (дугу) или просто число в зависимости от той задачи, которую решаем. А в ряде случаев аргументом может служить величина, имеющая и другую размерность, например время и т. д. Называя аргумент углом (дугой), мы можем подразумевать под ним число, с помощью которого он измерен в радианах.