Точечная сварка является разновидностью. Домашний инструмент: контактная точечная сварка своими руками. Принцип действия и устройство аппаратов точечной контактной сварки

Устанавливается следующими основными параметрами: силой или плотностью тока, временем нагрева, давлением, диаметром рабочей части электрода. Кроме того, часто задается время предварительного сжатия электродов t сж, время проковки t np форма рабочей части электрода и материал для его изготовления. Режимы специальных видов точечной сварки имеют еще некоторые дополнительные параметры.

Точечная сварка малоуглеродистой стали, как и , может производиться в очень широком диапазоне изменения параметров, однако каждому варианту режимов соответствует свое определенное соотношение параметров между собой.

Мягкие режимы характеризуются малой силой тока и большим временем нагрева, для жестких режимов сила тока большая, время нагрева - с варианта режима должен производиться с учетом конкретных условий производства и требований к сварочному соединению.

Сваривание точечной сваркой

Особенности названных вариантов точечной сварки

  1. Мягкие режимы

Сварка на мягких режимах сопровождается образованием широкой зоны разогрева, что облегчает деформирование металла и позволяет ограничиться не очень высокими требованиями к точности правки заготовок, как при жестких режимах.

  • Так как время нагрева повышено, степень влияния теплоты от быстро исчезающего контактного сопротивления на общий нагрев здесь несколько снижается.
  • Поэтому могут быть снижены н требования к тщательности подготовки поверхности заготовок.
  • Мощность электрическая я механическая при сварке на мягких режимах требуется более умеренная, чем при сварке на жестких режимах.

Точ. сварка

  1. Жесткие режимы

Жесткие режимы обеспечивают более высокую производительность и меньший расход энергии. Ввиду того, что поверхность деталей под электродами при жестких режимах нагревается сравнительно меньше, электроды нагреваются слабее в, несмотря на рост давления, расход их снижается. Заметно уменьшается глубин2 вмятая в месте сварки и коробление изделия. В целом жесткие режимы целесообразны, прежде всего, в массовом производстве, где выигрыш в производительности и расходе энергии полностью окупит дополнительные расходы, связанные с приобретением, эксплуатацией и питанием более мощного оборудования.

Сила и плотность тока.

С увеличением толщины свариваемых листов сила тока должна повышаться. Для сварки низкоуглеродистых сталей средней толщины на серийных машинах ориентировочный выбор силы тока l может осуществляться по следующему соотношению:

l =6500qa ,

Где q толщина свариваемых листов в мм.

При сварке листов различной толщины выбор параметро производится во условию достаточности нагрева и деформации более тонкого листа. Потому а приведенном соотношении и в последующих величина q отнесена к более тонкому листу.

Плотность тока I для жестких режимов выбирается в пределах 120 — 360 д/Лм*, для мягких 80- 160 а мм2.

С увеличением толщины листов плотность то/? снижается. Когда металл свариваемых деталей обладает повышенной тепло- и электропроводностью, плотность тока должна увеличиваться. Так, при сварке алюминия или его сплавов плотность тока иногда достигает 1000 а/мм2 и выше. Как упоминалось ранее, плотность тока должна выбираться большей, когда по каким-нибудь соображениям давление принимается повышенным.

Контактная точечная сварка

Время нагрева

Как и сила тока, время нагрева (tcs) возрастает с увеличением толщины деталей. Ориентировочно для сварки малоуглеродистой стали на жестких режимах время нагрева может выбираться по соотношению

tce - (0,1 -f-0.2) q сек.,

где q - толщина более тонкого листа в мм.

Для сварки листов толщиной до 3 мм на мягких режимах подбор времени нагрева может производиться пo соотношению.

I = (0.8×1) q сек.

Слишком длительный нагрев может вызвать перегрев металла в зоне сварки.

Для сварки металлов с высокой теплопроводностью время сварки принимается малым (при большой силе тока), при сварке закаливающихся сталей, наоборот, во избежание образования закалочных трещин при быстром охлаждения время нагрева часто приходится увеличивать (при соответствующем снижении тока).

Ход точечной сварки

Давление

Выбор давления (P) производится в зависимости от толщины, состояния и материала заготовок, а также от характера принятого режима нагрева.

Для сварки малоуглеродистой стали давление в зависимости от толщины выбирается do формуле

P=(60×200)q кг.

где q -толщина в мм.

Удельное давление имеет предел Зх10 кг/мм2.

Мягкую горячекатаную сталь возможно спаривать при меньших давлениях. Холоднокатаная сталь, получившую повышенную твердость наклепа, требует некоторого повышения давления (на 20-30%). Когда заготовки плохо выправлены и имеют коробления, то, прежде чем плотно сдавить листы на участке сиамки, приходится произвести правку под электродами. Общее требуемое усилие а этом случае должно быть увеличено, особенно при больших толщинах. Так, для листов толщиной 3-6 мм только это дополнительное усилие составляет 100-400 ке. По этой же причине усилие должно возрастать и тогда, когда точки располагаются о тех местах свариваемого узла, где сдавливание листов затруднено (вблизи ребер и других элементов жесткости, а местах сопряжения деталей но радиусу и т. д.).

Удельное давление возрастает вместе с прочностью свариваемого металла. При сварке низколегированных сталей оно может составить 120-160% к удельному давлению для малоуглеродистой стали, при сварке аустенитно и жаропрочных сталей и сплавов но повышается в 2-3 раза.

  • Диаметр электрода. Диаметр электрода (d) определяет плотность тока, удельное давление и степень интенсивности охлаждения поверхности детали.
  • На элек­трическое сопротивление зоны сварки диаметр электрода влияет относительно мало, лишь в конечной стадии на- грела, когда достигается полное соприкосновению поверхностей электрода и детали.
  • Поэтому яри длительном нагреве влияние диаметра электрода сказывается сильнее. Диаметр электрода возрастает с толщиной деталей.
  • Для толщины до 3 мм диаметр электрода рассчитывается но следующей формуле:

D=2 q+3мм,

где q - толщина более топкого листа.

Для деталей с большей толщиной расчет ведется по формуле

Изменением диаметра электрода часто пользуются для выравнивания нагрева отри сварке деталей, неодина­ковых по толщине или по роду металла.

В ходе процесса сварки под влиянием сильного нагрева и большой механической нагрузки рабочая часть электрода меняется с образованием грибовидною утолщения, а поверхность загрязняется окислами металла. Увеличение фактического диаметру электрода при неизменных силе тока и усилии сжатия означает снижение плотности тока и удельного давления. Вследствие этого интенсивность нагрева в сварочном контакте сильно уменьшается, а уплотнение металла затрудняется и сварка может оказаться некачественной. Кроме того, загрязнение поверхности электродов может вызвать увеличение переходного сопротивления, перегрев и даже оплавление поверхности листов. Обычно считают, что связанное с износом возрастание диаметра более чем на 10% уже недопустимо. Такие электроды должны зачищаться напильником, специальным приспособлением или перетачиваться.

Время предварительного сжатия

Пол временем предварительного сжатия понимается от начала приложения давления до начала нагрева. Оно должно быть достаточным, чтобы механизм сжатия успел свести электроды и развить давление до заданной величины. Этот параметр непосредственного влияния на тепловые процессы при сварке не имеет. Для повышения производительности данный параметр следует сокращать, насколько позволяет скорость работы механизма сжатия.

Время проковки

Время проковки (tnp) определяется длительностью нахождения уже сваренной точки под сжимающим воздействием электродов. Этот параметр влияет на скорость охлаждения металла после сварки, так как после нагрева, в условиях плотного соприкосновения электродов и детали, тепло от зоны сварки особенно быстро отводится в электроды.

При сварке закаливающихся сталей ускоренное охлаждение может вызвать появление трещин и время проковки поэтому следует уменьшать.

Однако во всех случаях давление не должно сниматься ранее некоторого времени, необходимого для полного затвердевания и упрочнения ядра. В противном случае деформированные при сварке листы, стремясь упруго возвратиться в начальное положение, могут разрушить еще не остывшее ядро, С повышением толщины время проковки возрастает, так как объем нагретого металла и время охлаждения увеличиваются.

Владельцы гаражей, дач или частных домов периодически проводят слесарные работы. Чаще они связаны с кузовным ремонтом автомобилей или восстановлением систем канализации и водоснабжения. И сварочный прибор – незаменимое устройство, без которого невозможно осуществить подобные процедуры. Может показаться, что для использования данного инструмента понадобятся определённые навыки, но практика показывает, что всё гораздо проще.

Особенности и принцип точечной сварки

Суть технологии состоит в соединении двух металлических листов, преимущественно не большой толщины. Но тут вместо привычного шва наносятся соединительные точки. Такое своеобразие позволяет скрепить максимально тонкие сплавы без деформации. Следует отметить, что точечная сварка применяется не только в домашнем хозяйстве, но и в крупной промышленности.

Плотность готового изделия будет завесить от следующих параметров:

  • форма и размер электродов;
  • продолжительность воздействия напряжения на объект;
  • чистота поверхности;
  • интенсивность электричества.

Скреплять можно чёрное и цветное железо, входящее в список значимых материалов на автомобильных авиационных и судостроительных заводах.

Основными преимуществами методики являются: высокие показатели производительности (до 10 заклёпок в секунду), нет необходимости использовать вспомогательные средства, достойные санитарные условия во время эксплуатации, точечная сварка может применятся в домашних условиях.

Скрепление элементов происходит за счёт сильного температурного влияния в месте прикосновения контактов.

В ходе реакции идёт кратковременное расплавление с последующим остыванием заготовки. Это и есть главный принцип действия точечной электросварки. Однако перед началом любых манипуляций рекомендуется внимательно изучить технику работы.

Технология процесса

Перед каждой операцией нужно тщательно очищать поверхность от грязи, ржавчины и прочих элементов. Если этого не сделать, велика вероятность получить хрупкое соединение. Затем оба предмета плотно соединяются плоскостями, и зажимаются между двух электродов. После через них пропускается электричество, которое и соединит предметы в данном месте.

Покупка такого оборудования обойдётся дорого, но любой желающий может сконструировать его из подручных средств. Схема простой точечной сварки будет отличным выбором, чтобы провести эксперимент и понять все тонкости сборки. Также агрегат легко создать из бытовых приборов, которые пришли в негодность. Например, контактная сварка своими руками часто делается из испорченных СВЧ печек.

Самодельный аппарат из микроволновой печи

Задача этого этапа сконструировать удобный корпус и извлечь трансформатор из СВЧ печи. Если самодельная конструкция выйдет хорошей, точечная сварка будет приносить удовольствие. В качестве материала рекомендуется брать древесину. Изделие должно получиться в виде щипцов, при этом нижний брусок должен быть неподвижным, а верхний вертикально двигаться. К обеим частям проводятся шнуры от трансформатора, которые присоединяются к медным стержням (их закрепляют на конце агрегата). Также, для удобства, к кабелю подключается кнопка, нажатие которой будет подавать заряд на шпили.

Устройство для проведения точечной сварки практически сделано, остаётся сделать несколько моментов: ко вторичной обмотке подключается провод с вилкой, монтируется дополнительный выключатель, оголённые провода хорошо изолируются. Однако не нужно сразу приступать к эксплуатации, и аппарат для контактной точечной сварки необходимо протестировать на ненужных заготовках. Также, во избежание травм, следует правильно подготовить трансформатор.

Сборка трансформатора

Эта деталь является самой значимой, поскольку отвечает за увеличение выходного напряжения. Для качественного выполнения своих функций, он обязан иметь приемлемый показатель трансформации. Аппарат для точечной сварки, собранный своими рукам может нести опасность из-за сильного тока. Во избежание этого проводиться модификация:

  • получить доступ к первичной обмотке (срезать болгаркой боковую крышку) и аккуратно её извлечь;
  • удалить вторичный моток (можно не бояться его повредить, поскольку он в дальнейшем не пригодиться);
  • очистить сердечник от клея и бумаги;
  • при помощи резинового молотка забить первичный обратно.

Далее берётся толстый кабель с большим сечением, качественной изоляцией и за ранее установленными медными наконечниками. Он наматывается сверху первого мотка так, чтобы оба его конца выходили с одной стороны, и всё собирается обратно. На этом сварочный аппарат, а точнее его главная часть, готовы к использованию.

Эти детали должны иметь высокую устойчивость к сильным перегревам. Тут отлично подойдут медные стержни с сечением не менее 15 мм. Можно сделать несколько контактов, которые будут иметь разную толщину. Таким образом можно проводить их замену в соответствии с проводимыми работами.

Ещё один вариант – использование двух жал от паяльника. Эти детали великолепно переносят большой жар, и прослужат долгое время.

Органы управления

Здесь имеется всего две системы управления: выключатель и кнопка подачи заряда. Первый монтируется в цепи первичной обмотки, чтобы придать вспомогательное сопротивление. Что касается подачи, то эту систему прикрепляют к верхнему щипцу. Это создаёт дополнительное удобство. Однако подавать энергию нужно после полного прикосновения шпилей. Иначе возникнет искра, которая может спалить контакты.

Само название контактная точечная сварка говорит о том, что детали прочно соединяются между собой точкой или точками в результате воздействия электрического тока и соответствующего усилия сжатия.

Таким способом можно соединять как самые тонкие детали, имеющие толщину до 0,02 мкм, так и детали толщиной до 20 мм, изготовленные из различных металлов и сплавов, а также их сочетаний. Сваривают этим видом сварки проволоку, прутки круглого, крестообразного сечения и др. профили. Чаще всего сваривают конструкции из мягкой и коррозионно-стойкой стали, а также все легкие сплавы и латунь.

Точечная сварка широко распространена при изготовлении конструкции в электронной промышленности, в судо-, самолето-, автомобилестроении, сельском хозяйстве, других отраслях промышленности и быту. Сварка применяется при рихтовке и сварке кузовов машин, при изготовлении шкафов и корпусов, которые применяются в электротехнической промышленности, производстве изделий каркасной формы, изготовлении посуды.

Ни одна станция технического обслуживания и небольшие мастерские по обслуживанию автомобилей не могут существовать, не имея в своем арсенале машины для точечной сварки.

Этапы выполнения точечной сварки

К ним относятся:

  • подготовка кромок изделия под сварку;
  • совмещение деталей в нужном положении и помещении их между электродами;
  • нагрев изделия до состояния пластичности;
  • деформирование.

Подготовка кромок под сварку заключается в зачистке их до металлического блеска и обезжиривания. Детали должны плотно прилегать друг к другу в процессе осуществления сварки. Для этого используют ручные тиски или струбцины.

К преимуществам относят:

  • высокую скорость (некоторые аппараты позволяют совершать 600 соединений в минуту);
  • отсутствие деформаций и короблений;
  • нет необходимости использовать сварщика с высокой квалификацией;
  • экономичность;
  • возможность автоматизации сварочного процесса.

К недостаткам можно отнести большую трудоемкость сварки, невозможность получить герметичное соединение и невозможность применить этот вид сварки для нагруженных и силовых изделий.

Устройство сварочной машины

Основными частями любой сварочной машины для точечной сварки являются:

  • трансформатор тока (вторичная обмотка у него подсоединяется к электродам);
  • специальный механизм, предназначенный для сжатия электродов;
  • сварочный зажим;
  • устройство, позволяющее включать и выключать сварочный ток;
  • шкаф управления (регулирует силу тока и время его протекания).

У сварочных аппаратов небольшой мощности шкаф управления может отсутствовать, тогда время пропускания тока и необходимое усилие сжатия электродов регулирует сам сварщик, полагаясь на свой опыт и навыки.

Обычно у сварочных аппаратов регулируются следующие основные параметры:

  • сила тока;
  • время прохождения тока;
  • усилие сжатия электродов.

В процессе работы на любом сварочном аппарате необходимо следить за состоянием электродов. Диаметр электрода не должен увеличиваться. Это приводит к уменьшению концентрации тепла в месте соединения деталей. Диаметр электрода должен быть таким же, как и полученная впоследствии сварочная точка. Плоскость контакта электрода с металлом зачищают плоским напильником или шлифовальной шкуркой.

Необходимо помнить, что электроды изготавливаются из специальных материалов — меди и жаропрочных бронз, которые способны сохранять размеры и форму при высоких температурах (до 600 0С), однако в процессе эксплуатации они быстро изнашиваются и теряют свою форму. Поэтому надо не только следить за состоянием формы электродов, но и вовремя производить их замену.

Все аппараты можно классифицировать по следующим основным признакам:

  • назначению;
  • расположению электродов;
  • передвижению;
  • способу автоматизации.

По назначению аппараты делят на машины общего назначения и предназначенные для проведения конкретных работ (пециализированные). Аппараты общего назначения применяются в бытовых и производственных целях при выполнении разовых работ. Они характеризуются небольшими размерами и весом, легко транспортируются и работают, как правило, от бытовой электрической сети.

Специализированные аппараты используются для производственных целей при крупносерийном и массовом производстве однотипных изделий. Это позволяет максимально увеличить производительность. Характеризуются большими габаритами, питание у них часто осуществляется от электрической сети 380 В. К ним относятся специальные споттеры и машины, предназначенные специально для производства кузовных работ.

Электроды у машин могут располагаться следующим образом:

  • друг напротив друга;
  • рядом друг с другом (параллельно).

В первом случае электроды с двух сторон одновременно сжимают свариваемые детали, а во втором – электроды опираются с одной стороны деталей. Такие клещи называются двухточечными.

По способу передвижения аппараты могут быть 3 видов:

  • стационарные;
  • подвесные;
  • мобильные.

В стационарных машинах для точечной сварки детали перемещают под машину, а в подвесных и мобильных происходит установка аппарата в положение сварки. Обычно в ремонтных целях используют сварочные клещи. Они имеют небольшие размеры и позволяют выполнять точечную сварку по месту проведения ремонтных работ.

По способу автоматизации оборудование может быть:

  • ручным;
  • автоматическим.

Основным параметром при выборе необходимой для тех или иных целей машины является сила сварочного тока и длина рычагов с электродами. Именно это определяет, какую толщину деталей можно сваривать, какой металл и с какими габаритами. Обычно производитель это указывает в паспорте на конкретную модель аппарата для точечной сварки. Простейший аппарат для точеной сварки можно вполне .

Порядок работы аппаратов точечной сварки

Детали, подлежащие соединению, накладываются внахлестку друг на друга. Потом они устанавливаются между электродами и закрепляются. Далее происходит пропускание токабольшой силы (около 5000 А) и небольшого напряжения (4В).Эти значения зависят от товщины свариваемых деталей. Это вызовет быстрый нагрев металла в месте контакта на всю толщину деталей. Произойдет его плавление.

Нагрев осуществляется подача импульса сварочного тока. Его длительность не более 0,1 сек, а то и меньше, в зависимости от условий сварки. За это время он расплавит металл в зоне соединения и образует жидкий металл. После его снятия еще некоторое время детали удерживаются под давлением. Это делается для того, чтобы металл остыл и закристаллизовался. Прижатие деталей происходит в момент действия сварочного импульса. Это позволяет предотвратить выплеск металла из зоны образования точки.

Дефекты контактной точечной сварки

Все дефекты, которые могут возникнуть при контактной точечной сварке можно разделить на видимые и невидимые (внутренние). К видимым дефектам относят:

  • трещины;
  • прожоги;
  • разрывы металла;
  • вырывы точек;
  • темную поверхность точек;
  • вмятины;
  • неправильную форма точек.

К невидимым дефектам относят:

  • непровар:
  • внутренние трещины, выплески, раковины и поры.

Этому способствует неправильно подобранная технология сварки, неправильная подготовка металла к сварке, недостаточное охлаждение электродов в процессе сваривания, износ поверхности электродов и другие факторы, которые негативно сказываются на качестве изделия. Выявить наружные дефекты можно сразу, а внутренние только специальными методами неразрушающего контроля, которые применяются на производствах, производящих изделия ответственного назначения.

В магазинах, включая и интернет-магазины, можно приобрести аппараты от ведущих мировых и отечественных производителей сварочного оборудования.

Особой популярностью и хорошим спросом пользуются аппараты компании G.I.Kraft из Германии, сварочные аппараты BlueWeld, производимые в Италии, компании Forsage из Украины, мобильные аппараты «КРАБ» производителя из Украины и другие. Все они отличатся прекрасными качественными характеристиками, инновационными технологиями изготовления и высокой производительностью. Огромный ассортиментный ряд позволяет выбрать аппарат под конкретные нужды с превосходными характеристиками, который прослужит длительное время.

Уже более 150 лет людям известен способ соединения металлов, называемый точечной сваркой. Этот способ позволил автоматизировать и сделать массовым производство автомобилей, сельскохозяйственной техники, самолетов и тысяч наименований бытовой продукции. Благодаря относительно простому принципу действия, точечная сварка приходит и в быт обычных мастеров-любителей, автослесарей, жестянщиков.

Технология контактной сварки работает довольно просто — детали плотно сжимаются и через кратчайшее расстояние подается мощный электрический импульс. Металл разогревается, в точке соприкосновения образуется расплавленное ядро. Так как детали сжаты, происходит диффузия металлов. Ток выключается, точка остывает, металл кристаллизуется. Сварная точка получается прочной, при попытке разорвать соединение лопается материал рядом с точкой. Принцип работы аппаратов сварки — генерирование этого импульса и плотное сжатие деталей.

Чтобы импульс тока хорошо разогрел металл, он должен быть с большой силой и низким напряжением. Промышленные аппараты имеют характеристики: напряжение на контактах всего 1 — 3 Вольта, способны давать силу тока в 10 — 15 килоАмпер.

Устройство аппарата точечной сварки

Любой аппарат точечной сварки состоит из двух блоков:

  • источник питания;

Чтобы получить мощный разряд при небольшом напряжении, потребуется трансформатор индукционного типа. Соотношение первичной и вторичной обмоток позволяет получить электрический импульс, достаточный для расплавления металла.

Зажимные клещи состоят из двух медных или графитовых контактов, расположенных на разных рычагах, и прижимного механизма. Прижимы бывают с разным приводом:

  • Механические. Состоят из мощной пружины и рычага, сжатие металлов происходит за счет мускульной силы. Применяются в самодельных или бытовых аппаратах, не дают должного контроля за степенью сжатия, обладают малой производительностью.
  • Пневматические. Наиболее популярны для переносных ручных аппаратов, легко регулируются при помощи изменения давления в воздушной магистрали. Недостаток — сравнительно медленные, не дают возможности изменения давления в процессе сваривания.
  • Гидравлические. Не так популярны, гидравлический привод также медленный, но обладает большей широтой настроек, благодаря применению перепускных регулируемых клапанов.
  • Электромагнитные. Самые «молниеносные», применяются как на ручных аппаратах, так и на больших стационарных. Позволяют регулировать сжатие металлов в процессе сварки, что позволяет добиться провара и отсутствия «выплесков» металла.

Усложнение конструкции возможно при использовании контуров жидкостного охлаждения на нагруженных аппаратах, применении различных систем управления током и прижимом, роботизации перемещения электродов.

Где применяется

Точечную сварку применяют для соединения различных конструкционных металлов и сплавов. Особенности технологии — экологичность, скорость, надежность, легкость автоматизации — позволяют широко применять ее в:

  • автомобилестроении для сборки кузовов;
  • ювелирном деле для соединения деталей;
  • микроэлектронике для спайки микросхем;
  • производстве сварных арматурных каркасов для монолитных плит;
  • производстве корпусов, деталей товаров народного потребления.

Преимущества и недостатки

Среди основных преимуществ точечной сварки особо выделяются:

  • прочность соединения;
  • технологичность;
  • экономичность;
  • возможность соединения как толстых, так и ультратонких деталей;
  • возможность автоматизации и роботизации сварочного процесса;
  • высокая культура производства и экологичность;
  • универсальность в материалах и возможность масштабирования.

Среди недостатков можно выделить:

  • сложность диагностики сварного соединения;
  • требования к чистоте металлов при сварке;
  • сложность настройки аппаратуры.

Оборудование и материалы для точечной сварки

Чтобы варить точками необходимы:

  • аппарат для точечной сварки;
  • свариваемые зачищенные детали;
  • для защиты деталей от коррозии можно применять токопроводящий грунт или мастику.

Техника безопасности при точечной сварке

Главное при использовании аппаратов точечной сварки — соблюдение правил . При эксплуатации техники не должно быть оголенных контактов, нарушений изоляции кабелей. Все контакты при подключении аппарата к сети должны соответствовать номинальным параметрам, обязательно применение дифавтоматов и заземления.

При удерживании металлов используйте диэлектрические перчатки, рукоять клещей должна быть надежно заизолирована.

Средства защиты

Стандартный набор сварщика вполне подойдет для работы с точечной сваркой. Плотная роба, хлопчатобумажные или спилковые перчатки, прозрачный щиток или очки, респиратор или вытяжка — вот весь набор средств защиты.

Меры безопасности

Всегда проверяйте оборудование перед началом работ! Детали корпуса должны быть надежно заземлены, ручки и держаки — заизолированы.

Обслуживание и перенастройка аппарата производится в выключенном состоянии.

Педаль или кнопка управления должна находиться в удобном месте.

Сварщик должен прочно держать заготовку или инструмент, твердо и устойчиво стоять.

Технология и процесс точечной сварки

В зависимости от толщины металлов, их вида, условий технология сварки может отличаться деталями. Но в целом порядок работ одинаков.

Точечная варка происходит в несколько этапов:

  1. Подготовка поверхностей. Они должны быть очищены от непроводящих ток лакокрасочных материалов и окислов, а также без напряжения плотно присоединяться.
  2. Сжимание деталей. Для этого привод клещей прочно сжимает поверхности, они частично деформируются. Это нужно для возникновения участков проведения тока именно между контактами клещей.
  3. Нагрев деталей электрическим импульсом. Чем толще детали, тем дольше приходится держать нагрев. Импульс может быть как постоянный, так и с регулируемой силой тока, переменный.
  4. В автоматических станках есть этап ослабления давления на детали — это нужно для предотвращения выдавливания металла из расплавленного ядра. В ручных механических клещах этот этап пропускается.
  5. Ток выключается. На глаз момент выключения тока можно определить по нагреву области между электродами — как только металл начинает краснеть, ток отпускается.
  6. Прижим или проковка во время остывания металла. Нужны для формирования прочной кристаллической структуры сварной точки.
  7. Деталь готова.

В зависимости от вида металлов применяются различные настройки. Качество соединения зависит от технологии сварки, типа импульса, режимов сжатия деталей.

Дефекты и причины их возникновения при точечной сварке

Несмотря на технологичность, точечная сварка требует точных настроек и постоянного контроля за качеством на производстве. Среди дефектов можно выделить:

  • Прожог. Он выглядит как отверстие в обеих деталях, сплавленные края легко отрываются.При слишком высокой силе тока, большой длительности импульса или избыточной силе сжатия металл перегревается и стекает. Для снижения риска прожога стоит снизить силу тока или прижима.
  • Выплески. При сильном сжатии или долговременном слабом импульсе металл выходит из расплавленного ядра, на его месте образуется пустота. При работе выплески выглядят как искры, вылетающие из точек. До известного предела выплеск не вредит, так как компенсируется сжатием деталей, но точка будет менее надежной — толщина вокруг точки неизбежно уменьшается.
  • Непровар. Слабый импульс, недостаточная сила сжатия, ослабление клещей при сваривании приводят к непрогреву ядра. Такая точка будет «склеена», но при нагрузке оторвется. Непровар может возникнуть, если сварные точки расположены рядом — соседняя точка выступает шунтом, через который проходит часть электрической энергии. Соответственно, она не будет затрачена на расплав металла.
  • Уменьшение диаметра сварки. Если импульс будет коротким или детали не будут прилегать плотно, образуется недостаточная площадь расплава. В этом случае в одной точке может быть один или несколько микрорасплавов, которые в сумме значительно слабее монолитной точки.

Трещины и разрушение основного металла. Возникают в случае отсутствия сжатия, близости точки к краю нахлесточной полосы, грязном металле. Визуально при помощи увеличительного стекла этот дефект обнаружить легко.

Исправление дефектов сварки

Диагностика точечной сварки довольно сложная процедура. Привычные ультразвуковые методы исследования не дают точной картины, поэтому на производствах с автоматизацией проводят тесты с разрушением контрольных образцов.

Выявленные дефекты исправляются следующими методами:

  • повторным провариванием точкой;
  • высверливание и последующая сварка полуавтоматом;
  • наружные выплески поддаются зачистке;
  • проковка горячей точки;
  • установка сварной или вытяжной заклепки.

Обозначения точечной сварки на чертежах по ГОСТ

Порядок в производстве обеспечивается правильной технической документацией. Точечная сварка имеет свое обозначение на чертеже, которое дополняется специальным буквенным кодом. На лицевой плоскости обозначаются контуры свариваемой области, и крестами места точек. На боковом разрезе точка сварки выглядит как состыкованные заштрихованные плоскости.

Обозначение сварных точек производится на чертежах по ГОСТ 15878-79. Там же оговорены все условные обозначения и дополнительные данные.

Покупать или сделать своими руками?

Несмотря на распространенность технологии, стоимость профессионального оборудования довольно высока. Поэтому среди домашних мастеров ходят схемы самостоятельного изготовления устройства для точечной сварки из простейшего трансформатора и механических клещей. Сделать своими руками можно как мощный аппарат для соединения 4-5 мм металла, так и ювелирный прибор, способный помочь радиомеханику. Ручная работа в гараже не требует дорогого оборудования.

Такой аппарат вполне способен варить неответственные стыки. Если же от прочности сварки зависит жизнь человека (например, кузовной ремонт), лучше приобрести заводское устройство машинной точечной сварки с пневматическим приводом клещей и настраиваемым контроллером или применить другие виды сварки.

Качество изготовления заводских аппаратов выше, они рассчитаны под конкретные задачи, прочность соединений выше, присутствует техника безопасности. Эти аппараты позволяют варить много, и настроены на работу на производствах.

Для соединения деталей используются разные способы сварки. Одной из широко используемых видов является точечная сварка. Особенно она необходима там, где требуется соединить детали с относительно тонкой стенкой. Это относится к частям корпуса электротехнических приборов и различным конструкциям из листовой стали, толщина которых не более 2 мм.

Сварка, выполняемая точечно в одной или нескольких местах деталей, относится к разновидности контактной сварки.

Нагрев металлического сплава и его последующее расплавление при этой технологии осуществляется за счет тепла, которое возникает за счет пропускания тока по электродам через соединяемые внахлест детали в области их плотного сжатия. Для этого параллельно с пропусканием электрического тока проводится механическое сжимание электродами соединяемых частей. При тесном контакте расплавленных участков происходит их сплавление, усиленное точечным диффузным проникновением при сжатии частей металла.

Контактная точечная сварка отличается:

  • мгновенным выполнением соединения (несколько секунд);
  • большим значением сварочного тока (свыше 1000А);
  • малым напряжением в рабочей зоне (от 1 до 10 В);
  • применением сжимающего сдавливания в точке сварки (от 10 до 100 кг и выше);
  • точечной областью сплавления.

Нагрев металла объясняется законом Джоуля Ленца, когда низкое сопротивление электродов обеспечивает хорошую электропроводность в месте его контакта с металлической поверхностью и усиливает силу тока в этом месте. Передавая максимально возможный ток металлическим деталям, электрод способствует их нагреву в месте соединения за счет большого сопротивления металла, препятствующего прохождению этого тока.

Максимальный нагрев в месте контакта электродов с поверхностью детали приводит к расплавлению металла в этом месте. При температуре плавления происходит образование литых точечных ядер, диаметр которых колеблется в диапазоне от 4 до 12 мм. Детали приваривают точечно в одном или нескольких местах.

При таком соединении его прочность напрямую зависит от структурного строения и размера точечного сплавления. Эти характеристики зависят от следующих факторов:

  • вида используемых электродов;
  • характера и силы тока при проведении сварки;
  • времени воздействия тока на соединяемые детали;
  • величины сжимающего усилия;
  • качества, толщины и характеристик металла свариваемых поверхностей.

Этапы работы

Процесс выполнения сварки происходит поэтапно:

  • Сначала создается плотный контакт деталей с помощью зажима между электродами.
  • После пропускания тока через электроды проводится точечное нагревание металла до температуры плавления с образованием ядра. При продолжении пропускании тока жидкое ядро увеличивается и достигает максимальной величины. Внутри расплавленного ядра происходит межкристаллическая перестройка металла с образованием новых структурных связей.
  • Одновременно проводится деформационное воздействие на зону контакта до окончательного формирования нужного размера точечного соединения. Достаточное сжимающее усилие обеспечивает плотное прижимание соединяемых частей и за счет этого происходит формирование вокруг зоны жидкого ядра уплотненного пояса, препятствующего выплескиванию расплава из зоны контактной сварки.
  • Последним этапом процесса сварки является отключение тока и охлаждение жидкого ядра металла с его постепенной окончательной кристаллизацией. При этом он становится меньше по размерам. При быстром охлаждении может возникнуть остаточное напряжение, которое негативно отражается на качестве соединения. Чтобы не допустить этого, усилие сжатия электродов снижают постепенно, не прерывая сразу вместе с отключением тока после выполнения работ. Это обеспечивает правильную структуру металла без напряжения в межкристаллических связях. Иногда на последней стадии работы советуют увеличить сжимающее усилие, чтобы обеспечить полную проковку металла в месте соединения и его однородность без присутствия напряжений.

Виды точечной сварки

Соединение деталей можно проводить двумя способами: с использованием мягкого или жесткого сварочного режима.

Выполнение работ с использованием мягкого режима отличается постепенным нагревом металла соединяемых деталей с использованием умеренного по силе плотности тока (не более 100 ампер/мм 2). Время разогрева от 0,5 до 3 секунд. При таком режиме происходит меньший расход потребляемой мощности и нагрузки на сеть. Поэтому он не нуждается в повышенных требованиях к мощности. Все это ведет к небольшой степени закалки зоны нагрева. Такой щадящий режим работы хорошо подходит для соединения сталей, которые чувствительны к термообработке и подвержены быстрой закалке появлением напряжения при агрессивных условиях проведения сварочных работ.

Технология жесткого режима основана на применении тока с высоким значением плотности и большим усилием сжатия при сдавливании деталей. Ток может иметь плотность до 300 ампер/мм 2 , а усилие сдавливания колеблется в интервале 3-8 кг/мм 2 . Время воздействия значительно короче, чем при выполнении работ в мягком режиме, и может продолжаться от 0,1 до 1,5 сек.

Для такого режима требуется использовать аппарат для точечной сварки, потребляющий значительную мощность. Зато процесс соединения деталей осуществляется быстро, обеспечивая высокую степень производительности. Жесткий режим сварочных работ часто используется для соединения медных или алюминиевых сплавов, а также легированных стальных изделий с большой теплопроводностью. Работа в таком режиме помогает сохранить их коррозионную устойчивость.

Применяемое оборудование

Для выполнения точечной стыковки деталей существует много разных по виду и принципу работы устройств, которые отличаются техническими параметрами и имеют различные режимы работ.

Аппарат точечной сварки различается, прежде всего, потребляемой при работе мощностью. Он может быть в виде машины с большими габаритами и высоким уровнем производительности, но потреблять при этом большую мощность.

Также есть устройства, имеющие вид небольшого переносного аппарата, который можно использовать для проведения разовых сварочных работ в быту.

Существующие сварочные аппараты отличаются характером тока в процессе выполнения сварного соединения. Он зависит от принципа устройства и схемы электрической замкнутой цепи.

Сварочное оборудование для точечной сварки производят в виде:

  • машин, которые осуществляют сварное соединение на переменном токе;
  • аппаратов, использующих токи низкой частоты;
  • машин, проводящих сварку в режиме конденсатора;
  • машин, использующих для сварки постоянный ток.

Наибольшее применение имеет точечный сварочный аппарат, который осуществляет процесс сварки на переменном токе. В таких машинах напряжение для работы получают путем преобразования сетевого напряжения 220 или 380 вольт с использованием трансформатора, время работы которого регулируется специальным модулем, управляющим контроллером и другими приборами, включенными в схему.

Разновидностью таких машин, работающих на переменном токе, является устройство МТР-1210, работающее на пневматическом приводе. Современной установкой для точечного соединения на переменном токе является машина МТР-16053, которая имеет электронное управление процессом сварки.

Конденсаторный режим сварочных работ состоит в постепенном накоплении электроэнергии конденсатором во время его зарядки. Затем осуществляется быстрый расход этой электроэнергии при генерации большого импульса тока. Это дает возможность проводить процесс очень быстро и расходовать при этом меньшую электроэнергию и мощность. Импульсный расход электроэнергии дает максимально сконцентрированное тепло за короткий промежуток времени, что создает минимальную термическую зону соединения деталей. Примером конденсаторной машины является аппарат точечной сварки МТК-2002ЭК.

К машинам, работающим на постоянном токе, относится устройство МТВР-19053. Оно имеет особую конструкцию хоботов и вставленных в них электродов. Это дает возможность выполнять сварное соединение различных по форме и размеру деталей.

Какие электроды нужны для точечной сварки

Эффективность выполнения работ во многом зависит от характеристик электродов: их размера, формы и материала, из которого они изготовлены. Электроды для точечной сварки выполняют двойную функцию: проводят ток в область сварки и обеспечивают зажимное усилие.

Электроды бывают прямой и фигурной формы. В основном используются прямые устройства, т. к. они обеспечивают свободный доступ к точке соединения.

Форма наконечника электродов бывает плоской и сферической и характеризуется соответственно размером диаметра (d) плоского сечения или радиусом (R) сферического конца. От этих размеров зависит величина контактной площади электрода с поверхностью металлической детали, что напрямую влияет на плотность подаваемого тока и силу сдавливания деталей. От этих характеристик зависит величина полученного расплава и размеры ядра.

Электроды, имеющие сферическую форму наконечника, более устойчивы к изнашиванию и не так чувствительны в случае их неправильной ориентации к поверхности детали при установке. Поэтому их особенно рекомендуют применять для сваривания мягких сплавов на основе алюминия или других, т. к. они, в отличие от изделий с плоским сечением наконечника, не оставляют вмятин и повреждений на поверхности. На практике сферические электроды преимущественно используют при точечной сварке любых сплавов.

Размеры электродов обозначены в ГОСТе 14111-90 и имеют значения от 10 до 40 мм. Их выбор зависит от размера толщины соединяемых деталей. Рекомендуемые для определенной толщины размеры рабочей зоны электродов показаны в таблице:

* в новом варианте ГОСТа вместо значения диаметра D=12 мм, включен размер 10 мм и 13 мм.

Существенное влияние оказывает также материал, из которого изготовлен электрод. Он определяет характеристики электрического сопротивления, теплопроводности и прочности электрода при повышенных температурах. При циклических изменениях высокой температуры и нагрузки электрод подвергается повышенному износу в месте рабочей зоны. Поэтому эта часть электрода изготавливается из жаропрочных сплавов меди с высокой электропроводностью и большой проводимостью тепла.

Область применения

Точечная сварка используется в промышленном масштабе при производстве конструкций путем штамповки с одновременной точечной сварочной стыковкой. Этот способ соединения применяется в изготовлении деталей для автомобилей, самолетов, космической, сельскохозяйственной и другой техники, имеющей в конструкции профильные формы. Также такая сварка применяется для создания миниатюрных узлов в приборостроительной сфере, в том числе для производства электронных устройств, где используются детали с тонкой стенкой.