Найти диаметр вала из условия прочности. Определить из условий прочности необходимые размеры диаметров редукторного ступенчатого вала. Строим эпюру крутящих моментов

КРУЧЕНИЕ

Последовательность решения задачи

1. Определить внешние скручивающие моменты по формуле

М= Р

где Р - мощность,

ω - угловая скорость.

2. Так как при равномерном вращении вала алгебраическая сумма приложенных к нему внешних скручивающих (вращающих) моментов равна нулю определить уравновешивающий момент, используя уравнение равновесия

М i z = 0

3. Пользуясь методом сечений, построить эпюру крутящих моментов по длине вала.

4. Для участка вала, в котором возникает наибольший крутящий момент, определить диаметр вала круглого или кольцевого сечения из условия прочности и жесткости. Для кольцевого сечения вала принять соотношение диаметров

где d о - внутренний диаметр кольца;

d - наружный диаметр кольца.

Из условия прочности:

Из условия жесткости:

где M zmax - наибольший крутящий момент;

W p - полярный момент сопротивления кручению;

[τ кр ] - допускаемое касательное напряжение

где J p - полярный момент инерции сечения;

G - модуль упругости при сдвиге;

[φ о ] - допускаемый угол закручивания сечении

Сечение вала - круг

Необходимый по прочности диаметр вала:

Необходимый по жесткости диаметр вала:

Сечение вала - кольцо

Необходимый по прочности наружный диаметр кольца:

Необходимый по жесткости наружный диаметр кольца:

Пример 1 . Для стального вала (рис.1) постоянного по длине сечения требуется: 1) определить значения моментов М 2 и М 3 , соответствующие передаваемым мощностям Р 2 и Р 3 , а также уравновешивающий момент М 1 ; 2) построить эпюру крутящих моментов; 3) определить требуемый диаметр вала из расчетов на прочность и жесткость, полагая по варианту (а) (б) - c =d 0 / d=0,8.

Принять: [ τ кр ] = 30 МПа ; [ φ 0 ] = 0,02 рад/м; Р 2 = 52 кВт; Р 3 = 50 кВт; ω = 20 рад/с; G = 8 10 4 МПа

Рис. 1 - Схема задачи

Решение:

1. Определяем внешние скручивающие моменты:

М 2 = Р 2 / ω = 52  10 3 / 20 = 2600 Н  м

М 3 = Р 3 / ω = 50  10 3 / 20 = 2500 Н  м

2. Определяем уравновешивающий момент М 1 :

М i z = 0; М 1 – М 2 – М 3 =0

М 1 = М 2 + М 3 = 5100 Н  м

3. Определяем крутящий момент по участкам вала:

М z I = М 1 = 5100 Н  м

М z II = М 1 – М 2 = 5100 – 2600 = 2500 Н  м

Строим эпюру крутящих моментов М z (рис. 2).

Рис. 2 - Эпюра крутящих моментов

4. Определяем диаметр вала из условий прочности и жесткости, принимая М z max = 5100 Н м (рис. 2).

а) Сечение вала круг.

Из условия прочности:

Принимаемd = 96 мм

Из условия жесткости:

Принимаем d = 76 мм

Требуемый диаметр получился больше из расчета на прочность, поэтому его принимаем как окончательный d = 96 мм.

б) Сечение вала - кольцо.

Из условия прочности:

Принимаем d = 114 мм

Из условия жесткости:

Принимаем d = 86 мм

Требуемые диаметры окончательно принимаем из расчетов на прочность:

Наружный диаметр кольца d = 114 мм

Внутренний диаметр коль ца d о = 0,8 d = 0,8 114 = 91,2 мм. Принимаем d о =92 мм .

Задача 1. Для стального вала (рис.3) постоянного поперечного сечения требуется: 1) определить значения моментов М 1 , М 2 , М 3 и М 4 ; 2) построить эпюру крутящих моментов; 3) определить диаметр вала из расчетов на прочность и жесткость, полагая по варианту (а) поперечное сечение вала - круг; по варианту (б) - поперечное сечение вала - кольцо, имеющее соотношение диаметров c =d 0 / d=0,7. Мощность на зубчатых колесах принять Р 2 = 0,5Р 1 ; Р 3 = 0,3Р 1 ; Р 4 = 0,2Р 1 .

Принять: [ τ кр ] = 30 МПа ; [ φ 0 ] = 0,02 рад/м; G = 8 10 4 МПа

Окончательное значение диаметра округлить до ближайшего четного (или оканчивающегося на пять) числа.

Данные своего варианта взять из таблицы 1

Указание. Полученное расчётное значение диаметра (в мм) округлить до ближайшего большего числа, оканчивающегося на 0, 2, 5, 8.

Таблица 1 - Исходные данные

Номер схемы на рисунке 3.2.5

Р 1

Варианты

рад/с

кВт


Рис. 3 - Схема задачи

Задание

Для стального вала круглого поперечного сечения определить значения внешних моментов, соответствующих передаваемым мощ­ностям, и уравновешенный момент (табл.7.1 и табл.7.2).

Построить эпюру крутящих моментов по длине вала.

Определить диаметры вала по сечениям из расчетов на проч­ность и жесткость. Полученный больший результат округлить до ближайшего четного или оканчивающегося на 5 числа.

При расчете использовать следующие данные: вал вращается с угловой скоростью 25 рад/с; материал вала - сталь, допуска­емое напряжение кручения 30 МПа, модуль упругости при сдвиге 8 10 4 МПа; допускаемый угол закручивания = 0,02 рад/м.

Провести расчет для вала кольцевого сечения, приняв с = 0,9. Сделать выводы о целесообразности выполнения вала круглого или кольцевого сечения, сравнив площади поперечных сечений.

Цель работы - научиться выполнять проектировочные и проверочные расчеты круглого бруса для статически определимых систем, проводить проверку на жесткость.

Теоретическое обоснование

Кручением называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор – крутящий момент. Внешними нагрузками также являются две противоположно направленные пары сил.

Распределение касательных напряжений по сечению при кручении(рис. 7.1)

Касательное напряжение в точке А:

Рис.7.1

(7.1)

где - расстояние от точки А до

центра сечения.

Условие прочности при кручении

; (круг), (7.2)

(кольцо), (7.3)

где М к - крутящий момент в сечении, Н-м, Н-мм;

W p - момент сопротивления при кручении, м 3 , мм 3 ;

[т к ] - допускаемое напряжение при кручении, Н/м 2 , Н/мм 2 .

Проектировочный расчет, определение размеров по­перечного сечения

(7.4)

где d - наружный диаметр круглого сечения;

d B n - внутренний диаметр кольцевого сечения; с = d BK /d.

Определение рационального расположения колесна валу

Рациональное расположение колес - расположение, при кото­ром максимальное значение крутящего момента на валу - наи­меньшее из возможных.

Условие жесткости при кручении

; G ≈ 0,4E (7.5)

где G - модуль упругости при сдвиге, Н/м 2 , Н/мм 2 ;

Е - модуль упругости при растяжении, Н/м 2 , Н/мм 2 .

[φо ] - допускаемый угол закручивания, [φо] = 0, 54-1 град/м;

J p - полярный момент инерции в сечении, м 4 , мм 4 .

(7.6)

Проектировочный расчет, определение наружное диаметра сечения

Порядок выполнения работы

1. Построить эпюру крутящих моментов по длине вала для пред­ложенной в задании схемы.

2. Выбрать рациональное расположение колес на валу и даль­нейшие расчеты проводить для вала с рационально расположенными шкивами.

3. Определить потребные диаметры вала круглого сечения из расчета на прочность и жесткость и выбрать наибольшее из полу­ченных значений, округлив величину диаметра.

4. Сравнить затраты металла для случая круглого и кольцево­го сечений. Сравнение провести по площадям поперечных сечений валов.

Контрольные вопросы

1. Какие деформации возникают при кручении?

2. Какие гипотезы выполняются при деформации кручения?

3. Изменяются ли длина и диаметр вала после скручивания?

4. Какие внутренние силовые факторы возникают при кручении?

5. Что такое рациональное расположение колос на валу?

6. Что такое полярный момент инерции? Какой физический смысл имеет эта величина?

7. В каких единицах измеряется?

Пример выполнения

Для заданного бруса (рис.7.1) построить эпюры крутящих моментов, рациональным расположением шкивов на валу добиться уменьшения значения максимального крутящего момента. Построить эпюру крутящих моментов при рациональном расположении шкивов. Из условия прочности определить диаметры валов для сплошного и кольцевого сечений, приняв с = . Сравнить полученные результаты по полученным площадям поперечных сечений. [τ] = 35 МПа.

Решение

Сечение 2 (рис.7.2б):

Сечение 3 (рис.7.3в):

Рис.7.2

А б в

Рис.7.3

  1. Строим эпюру крутящих моментов. Значения крутящих моментов откладываем вниз от оси, т.к. моменты отрицательные. Максимальное значение крутящего момента на валу в этом случае 1000 Н·м (рис.7.1).
  2. Выберем рациональное расположение шкивов на валу. Наиболее целесообразно такое размещение шкивов, при котором наибольшие положительные и отрицательные значения крутящих моментов на участках будут по возможности одинаковыми. Из этих соображений ведущий шкив, передающий момент 1000 Н·м, помещают ближе к центру вала, ведомые шкивы 1 и 2 размещают слева от ведущего с моментом 1000 Н·м, шкив 3 остается на том же месте. Строим эпюру крутящих моментов при выбранном расположении шкивов (рис.7.3).

Максимальное значение крутящего момента на валу при выбранном расположении шкивов – 600 Н*м.

Рис.7.4

Момент сопротивления кручению:

Определяем диаметры вала по сечениям:

Округляем полученные значения: , ,

  1. Определяем диаметры вала по сечениям при условии, что сечение - кольцо

Моменты сопротивления остаются теми же. По условию

Полярный момент сопротивления кольца:

Формула для определения наружного диаметра вала кольцевого сечения:

Расчет можно провести по формуле:

Диаметры вала по сечениям:

Наружные диаметры вала кольцевого сечения практически не изменились.

Для кольцевого сечения: , ,

  1. Для выводе об экономии металла, при переходе на кольцевое сечение, сравним площади сечений (рис.7.4)

При условии что сечение – круг (рис.7.4а)

Сплошное круглое сечение:

При условии, что сечение – кольцо, (рис.7.4б)

Кольцевое сечение:

Сравнительная оценка результатов:

Следовательно, при переходе с кругового на кольцевое сечение экономия металла по весу составит 1,3 раза.

рис.7.4

Таблица 7.1

Таблица 7.2

Вариант Параметры
a = b = с, м Р1,кВт Р2,кВт Р3,кВт
1,1 2,1 2,6 3,1
1,2 2,2 2,7 3,2
1,3 2,3 2,8 3,3
1,4 2,4 2,9 3,4
1,5 2,5 3,0 3,5
1,6 2,6 3,1 3,6
1,7 2,7 3,2 3,7
1,8 2,8 3,3 3,8
1,9 2,9 3,4 3,9
2,0 3,0 3,5 4,0
1,1 3,1 3,4 4,1
1,2 3,2 3,3 4,2
1,3 3,3 3,2 4,3
1,4 3,4 3,1 4,5
1,5 3,5 2,8 2,9
1,3 2,1 2,6 3,1
1,4 2,2 2,7 3,2
1,5 2,3 2,8 3,3
1,6 2,4 2,9 3,4
1,7 2,5 3,0 3,5
1,8 2,6 3,1 3,6
1,9 2,7 3,2 3,7
2,0 2,8 3,3 3,8
1,1 2,9 3,4 3,9
1,2 3,0 3,5 4,0
1,3 3,1 3,4 4,1
1,4 3,2 3,3 4,2
1,5 3,3 3,2 4,3
1,4 3,4 3,1 4,5
1,9 3,5 2,8 2,9

ПРИЛОЖЕНИЕ А

Определить из условий прочности необходимые размеры диаметров редукторного ступенчатого вала. Схема нагружения вала дана на рис. 1.

Исходные данные:

Мкр=0,2 кН·м.

a=30 мм.; b=60 мм.; c=100 мм.

D1=70 мм.; D2=120 мм.

[?]p=120 МПа.

Требуется:

1. Вычертить в масштабе заданную схему вала с указанием размеров и величин нагрузок.

2. Определить окружные Р и радиальные усилия Т, приняв соотношение между ними Т=0.36Р.

3. Построить эпюры изгибающих моментов в вертикальной и горизонтальной плоскостях.

4. Построить эпюру суммарных изгибающих моментов.

5. Построить эпюру крутящих моментов.

6. Используя энергетическую теорию прочности, определить диаметры вала на отдельных участках и округлить их до стандартных размеров.

7. Вычертить эскиз.

1. Заданная схема вала представлена на рисунке 1.

2. Определим окружные Р и радиальные усилия Т.

Крутящий момент на валу вызывают силы Р1 и Р2.

Приведем силу P1 к центру тяжести сечения вала: тогда пара сил с моментом

вызывает кручение, а сила P - изгиб вала в вертикальной плоскости.

В свою очередь, пара сил с моментом М2 =Р2D2/2 вызывает кручение в противоположную сторону, а сила в центре тяжести сечения вызывает изгиб.

Найдем окружные силы Р1 и Р2:

Радиальные усилия Т определим по формуле:

3. Построим эпюры изгибающих моментов.

Эпюра от действия сил в горизонтальной плоскости.

Определим опорные реакции:

Проверка:

1-ый участок (0

при z=0,1 M=0,002 кН·м.

2-ой участок (0

M=RB·(0,1+z)+Т2·z.

при z=0 M=0,002 кН·м, при z=0,06 M=0,043 кН·м.

3-ий участок (0

при z=0,03 M=0,043 кН·м.

Эпюра от действия сил в вертикальной плоскости.

Проверка:

Строим эпюру изгибающих моментов.

1-ый участок (0

при z=0,1 M=0,25 кН·м.

2-ой участок (0

M=RB·(0,1+z)-Р2·z.

при z=0 M=0,25 кН·м

при z=0,06 M=0,2 кН·м.

3-ий участок (0

при z=0,03 M=0,2 кН·м.

Построим эпюру суммарных изгибающих моментов. Для этого нужно рассмотреть несколько сечений вала и определить в них суммарный изгибающий момент по формуле:

Отсюда получаем:

Моменты внутренних сил или крутящих моментов находят методом сечений. Сначала разбивают вал на участки (между соседними шкивами)

затем на каждом участке выбирают произвольное сечение. Крутящий момент в этом сечении равен алгебраической сумме моментов внешних сил, лежащих по одну сторону от сечения. В пределах каждого участка крутящий момент постоянен. Знак крутящего момента определяют по знаку внешних моментов: положительным считается направление против движения часовой стрелки при взгляде на сечение вала вдоль его оси. При этом можно рассматривать любую часть вала по одну сторону от сечения.

1) Для вала на рис.2 крутящие моменты по участкам:

1-ый участок:

2-ой участок:

М=0,2 кН·м.

3-ий участок:

Полученные эпюры изображены на рисунке 2.

Рисунок 2 - Эпюры изгибающих и крутящих моментов.

Для подбора сечения применяем энергетическую гипотезу прочности:

Принимаем d1=70 мм., d2=120 мм.

Подобрать размеры поперечного сечения вала (рис. 1) по условию прочности . На участках от сечения 1 до сечения 3 и от сечения 5 до сечения 6 наружный диаметр вала по конструктивным соображениям должен иметь одинаковый размер.

На участке от сечения 1 до сечения 2 вал кольцевого поперечного сечения с n=d B /d=0,4. На участках от сечения 3 до сечения 5 вал подбирается только по условию прочности .

М = 1 кН∙м, [τ ] = 80 МПа.

Решение

Разбиваем вал на силовые участки , строим эпюру крутящего момента (рис. 1,б).

Определяем диаметры вала. На I, II и V участках наружный диаметр вала одинаков. Для них не возможно заранее указать сечение с наибольшим значением касательного напряжения, так как различные участки имеют различные типы поперечного сечения: I участок – кольцевое, II и V – сплошное круглое.

Приходится определять отдельно по условию прочности диаметры для каждого типа поперечного сечения по наиболее нагруженному силовому участку (то есть тому, на котором действует максимальный по абсолютной величине крутящий момент). Окончательно примем наибольший полученный диаметр.

Для участка с кольцевым сечением:

Для вала сплошного поперечного сечения

Окончательно принимаем наибольшее значение полученного диаметра, округленное до целого значения в большую сторону:

d 1 = d 2 = d 5 = 61 мм;

d B1 = n∙d 1 = 0,4∙61 = 24,4 мм.

Наибольшее действующее на этих участках напряжение:

Диаметр вала на III участке (М К3 = 5М = 5 кНм).


2. Кручение.

2.4. Построение эпюр угловых перемещений при кручении.

Имея формулы для определения деформаций и зная условия закрепления стержня, нетрудно определить угловые перемещения сечений стержня и построить эпюры этих перемещений. Если имеется вал (т.е. вращающийся стержень), у которого нет неподвижных сечений, то для построения эпюры угловых перемещений принимают какое-либо сечение за условно неподвижное.

Рассмотрим конкретный пример (рис. 2.12, а). На рис. 2.12, б дана эпюра Тк .

Примем сечение в точке А за условно неподвижное. Определим поворот сечения В по отношению к сечению А.

Где ТАВ - крутящий момент на участке АВ; lАВ - длина участка АВ.

Примем следующее правило знаков для углов поворота сечений: углы будем считать положительными, когда сечение поворачивается (если смотреть вдоль оси справа налево) против часовой стрелки. В данном случае будет положительным. В принятом масштабе отложим ординату (рис. 2.12, в). Полученную точку К соединяем прямой точкой Е, так как на участке АВ углы изменяются по закону прямой линии . Вычислим теперь угол поворота сечения С по отношению к сечению В. Учитывая принятое правило знаков для углов закручивания, получаем

Так как сечение В не неподвижное, то угол поворота сечения С по отношению к сечению А равен

Угол закручивания может получиться положительным, отрицательным и, в частном случае, равным нулю.

Предположим, что в данном случае угол получился положительным. Тогда, отложив эту величину в принятом масштабе вверх от эпюры, получим точку М. Соединяя точку М с точкой К, получим графмк углов закручивания на участке ВС. На участке CD скручивания не происходит, так как крутящие моменты на этом участке равны нулю, поэтому там все сечения поворачиваются на столько же, на сколько поворачивается сечение С. Участок MN эпюры здесь горизонтален. Читателю предлагается убедиться, что если принять за неподвижное сечение В, то эпюра углов закручивания будет иметь вид, представленный на рис. 2.12, г.

Пример 2.1. Определить диаметр стального вала, вращающегося с угловой скоростью W = 100 рад/с и передающего мощность N = 100 кВт. Допускаемо напряжение = 40 МПа, допускаемый угол закручивания = 0,5 град/м, G = 80000 МПа.

Решение. Момент передаваемый валом, определяется по формуле

T = N/W = 100 000 / 100 = 1000 Н * м

Крутящий момент во всех поперечных сечениях вала одинаков

Tк = Т = 1000 Н * м = 1 кН * м = 0,001 МН * м.

Диаметр вала по прочности определяем по формуле (2.15)

По формуле (2.24) определяем диаметр вала из условия жесткости

Диаметр вала в данном случае определяется из условия жесткости и должен быть принят равным d = 52 мм.

Пример 2.2. Подобрать размеры сечения трубчатого вала, передающего момент Т = 6 кН * м, при соотношении диаметров с = d/D = 0,8 и допускаемом напряжении = 60 МПа. Сравнить вес этого трубчатого вала с валом равной прочности сплошного сечения.

Ответ. Размеры трубчатого вала: D = 9,52 см, d = 7,62 см. Плошадь сечения Ат = 25,9 квадратных см. Диаметр вала сплошного сечения d1 = 8 см. Площадь сечения Ас = 50,2 квадратных см. Масса трубчатого вала составляет 51% от массы сплошного вала.