Непрерывные станы холодной прокатки. Лист холоднокатаный – основные свойства и особенности производства Прокатные станы холодной прокатки

На станах холодной прокатки изготавливают трубы диаметром от 4 до 450 мм

с толщиной стенки от нескольких десятых долей миллиметра до 30 мм и более.

В зависимости от используемой схемы прокатки различают две группы станов: продольной и поперечной прокатки. Наибольшее распространение в промышленности получили станы продольной прокатки как более производительные и эффективные в массовом производстве. Станы поперечной прокатки используют в специальных целях для изготовления небольших партий прецизионных труб и тонкостенных труб большого диаметра. Станы продольной прокатки труб подразделяют на валковые и роликовые. Валковые станы получили название станов ХПТ, роликовые - ХПТР. Станы поперечной прокатки труб называют станами ППТ.

По температурному режиму различают два способа прокатки: первый - с охлаждением зоны деформации - холодная прокатка; второй - с подогревом заготовки до 300...450 °С перед зоной деформации - теплая прокатка.

Процесс прокатки на станах ХПТ имеет периодический характер, так как труба прокатывается отдельными участками по ее длине при возвратно- поступательном движении клети.

Станы холодной прокатки принято классифицировать следующим образом: по характеру движения инструмента (валков) - станы с неподвижными осями валков (ХПТС, НХПТ); с вращающимися осями валков (ХПТВ и планетарные); с поступательным движением осей валков (ХПТ);

по числу одновременно прокатываемых труб - одно-, двух- и трехниточные; по длине рабочего конуса прокатываемых труб - короткоходовые, длинно- ходовые (с углом поворота калибра вокруг собственной оси свыше 180°);

по температурным условиям процесса - станы холодной и теплой прокатки (с индукционным нагревом заготовки);

по типу прокатываемых труб - для труб постоянного и переменного сечения (в обозначении типа стана с добавкой индекса П: например, ХПТ 120 П);

по типу загрузки - станы с торцевой и боковой загрузкой. Кроме того, станы ХПТ различают по исполнению основных механизмов: главного привода, рабочих клетей и распределительно-подающих устройств;

по типу приводного устройства клети - без уравновешивания, с уравновешиванием на рабочей клети, с уравновешиванием на кривошипном валу, с уравновешиванием на валу двигателя;

по типу уравновешивающего устройства - пневматическое, грузовое с возвратно поступательным движением противовеса, грузовое с качающимся дисбалансом, с вращающимися противовесами;

по типу рабочей клети - двухвалковые с подвижной клетью, четырехвапковые с подвижной клетью, с подвижной валковой кассетой и силовыми направляющими, со стационарной (неподвижной) клетью;

по механизму подачи и поворота заготовки - рычажного типа, редукторного типа с муфтами свободного хода, редукторного типа с дифференциальной передачей, зубчатого типа с мальтийским механизмом; дифференциального типа с периодическим торможением эпицикла и водила, с планетарно-гипоциклоидным преобразователем, с упругими элементами, со стационарным патроном;

по способу работы патронов заготовки - с периодическим возвратом (на всю длину), непрерывного циклического действия (с трастовым механизмом и механизмами со стационарным патроном), с совмещенным возвратом (два патрона работают с перехватом);

по расположению главного пульта - правые (справа от стана по ходу прокатки), левые.

В нашей стране станы ХПТ изготовляет АО ЭЗТМ. В конце 50-х годов. был разработан роликовый способ холодной прокатки труб, на основе которого были созданы станы холодной прокатки роликами (ХПТР) для прокатки прецизионных труб.

За рубежом крупнейшим производителем станов ХПТ является фирма "Mannesmann", которая выпустила более 300 одно-, двух- и трехниточных станов (табл. 2.9).

Станы для холодной прокатки труб предназначены для производства труб весьма широкого сортамента с особо точными геометрическими размерами.

Представляет интерес и четырехклетевой стан 400 холодной прокатки листа и ленты, установленный на Магнитогорском калибровочном заводе.

Подкатом для непрерывных станов холодной прокатки являются горячекатаные травленые рулоны со смазанной поверхностью.

Поскольку станы холодной прокатки предназначены для передела сортамента листовой стали, получаемой на станах горячей прокатки , то и длины бочек валков на них аналогичны.

Обычно эти станы устанавливают вслед за многоклетевыми станами холодной прокатки и являются как бы их продолжением...

Вполне возможно, что новые тонколистовые станы холодной прокатки будут устанавливаться с аналогичным расположением клетей на фундаменте.

Для примера рассмотрим трехклетевой стан 1450 холодной прокатки листа Магнитогорского металлургического комбината.

Производительность станов холодной прокатки . … Станы холодной прокатки листов работают также по непрерывному графику.

Упругая деформация станины в вертикальном направлении на современных станах холодной прокатки составляет 0,3-0,5 мм...

Трехклетевые станы холодной прокатки получили свое развитие на основе исследований о возможностях использования пластических свойств металла при холодной прокатке .

Станы для прокатки станы станы холодной прокатки листов.

Станы для прокатки толстолистовой стали. Все одноклетевые станы работают по принципу реверсивности. … Двуклетевые станы холодной прокатки листов.

В конце 50-х годов появились станы для прокатки балок крупного сечения. … В 80-х годах прошлого века были построены первые станы для; холодной прокатки листа.

Народное хозяйство страны в основном потребляет металл в виде готового... на станах холодной прокатки 40-50 м/с, на проволочных станах 60 м/с и более...

Непрерывные станы применяют как заготовочные, листовые (горячей и холодной прокатки ), сортовые и проволочные.

Различают горячую и холодную прокатку . … Для цехов горячей прокатки характерно наличие блюминга, слябинга или заготовочного стана .

Общее обжатие на современных станах холодной прокатки составляет 70-90%, что способствует повышению механических свойств и обеспечивает лучшее качество поверхности...

Трехклетевые станы холодной прокатки листов. Трёхклетевой стан 1450 холодной прокатки листа Магнитогорского металлургического комбината.

Современные непрерывные станы горячей прокатки позволяют получать листы высокого качества, предназначенные для холодной прокатки ...

При этом увеличивается масса рулона, что значительно повышает производительность станов холодной прокатки .

Сравнивая два одинаковых образца из стали, полученных разными способами, нельзя однозначно сказать, какой из них лучше. Но с учетом специфики применения металлических изделий (будь то лист или пруток) в каждом конкретном случае следует понимать, какие свойства приобретает сплав при той или иной прокатке заготовок («слябов»). Это нужно не только для того, чтобы сделать оптимальный выбор и не переплачивать за продукцию (особенно если производится закупка большой партии).

Порой разница между горячекатаными и холоднокатаными изделиями – принципиальная.

Информация, представленная в данной статье, будет интересна рядовому потребителю и однозначно поможет принять правильное решение. Но и профессионалу нелишне ознакомиться с предлагаемым материалом, так как всегда полезно периодически освежать память.

Главное различие в способах проката – в температуре, при которой производится обработка заготовок. При горячем она превышает 920 ºС (1700 ºF). Холодный прокат производится в более щадящем режиме, и температура существенно ниже значения (иногда на уровне комнатной), при котором происходит рекристаллизация конкретного металла (сплава).

Примечаниe

Рекристаллизация – процесс, при котором образуются и растут зерна (гранулы) равноосные. Происходит при значительном повышении температуры и меняет структуру материала, который приобретает иные свойства.

Особенности проката

Горячий

  • Металл (сплав) легче поддается обработке, поэтому при таком способе проката можно получить более тонкие листы или пруток меньшего сечения.
  • Для изготовления изделий методом горячего проката в основном используется низкосортная, более дешевая сталь.
  • Существует необходимость дальнейшей обработки изделий, так как нередко они покрыты окалиной.
  • Геометрия горячекатаных образцов строгостью не отличается (например, неровности по углам листов, неравномерность толщины), так как невозможно точно просчитать пределы деформации при охлаждении металла.

Расчет массы горячекатаного и холоднокатного листа по ГОСТ 19903-90, 19904-90:

  • Армирующие (усиливающие).
  • Несущие (фундаментные).

Холодный

  • Такой способ проката позволяет точно выдержать заданные размеры изделий.
  • Поверхность получаемых образцов – более гладкая, ровная, поэтому их последующая обработка сводится к минимуму (а порой и вовсе не требуется).
  • Металл холоднокатаный становится более твердым и прочным (на изгиб, растяжение, разрыв) с однородной структурой по всей площади.
  • На производство идет .
  • Более высокое качество холоднокатаного проката повышает его стоимость.

Вывод

Если на первом месте – стоимость проката, то предпочтение следует отдать горячему. Когда же определяющим фактором является внешний вид, прочность, качество, то следует приобретать холоднокатаные образцы.

Стальной холоднокатаный лист, получаемый в процессе холодной прокатки, характеризуется высоким качеством поверхности и точностью геометрических размеров. Подобная прокатка рекомендована при обработке листов малой толщины.

1 Лист холоднокатаный – ГОСТ и общие сведения

Холодная прокатка используется в тех случаях, когда требуется получить тонкие (менее 1 миллиметра) и высокоточные по параметрам листы и полосы стали, что недостижимо при применении горячекатаной технологии. Также прокат в холодном состоянии обеспечивает высокое качество физико-химических характеристик и отделки поверхности изделия.

Указанные достоинства обуславливают активное использование данного вида тонколистового проката и в цветной, и в черной металлургии наших дней (примерно половина тонколистового проката сейчас – это именно холоднокатаные листы).

Недостатком такой схемы является то, что она намного более энергоемка, нежели горячая прокатка. Вызвано это явлением наклепа (иначе говоря – деформации) стали в процессе проката, снижающего пластичные параметры конечного продукта. Для их восстановления приходится дополнительно осуществлять отжиг металла. Кроме того, описанный тип проката имеет технологию с немалым количеством различных переделов, для выполнения которых требуется использовать многообразное и технически сложное оборудование.

В цветной металлургии холоднокатаный процесс незаменим для выпуска медных, полос и лент малой толщины. Чаще же всего он применяется для обработки конструкционных низкоуглеродистых сталей шириной до 2300 мм и толщиной не более 2,5 мм, без которых не может обойтись современное автомобилестроение. Прокаткой холодного типа производят практически все виды жести, а также:

  • конструкционные низколегированные стали (в частности, трансформаторная и динамная электротехническая и нержавеющая сталь) – 45, 40Х, 09Г2С, 20, 65Г, 08кп, 08пс и др.;
  • кровельные листы;
  • травленый и отожженный декапир (металл для изготовления эмалированных изделий).

Согласно ГОСТ 9045–93, 19904–90 и 16523–97 тонколистовая продукция делится на различные типы в зависимости от:

  • плоскостности: ПВ – высокая, ПО – особо высокая, ПН – нормальная, ПУ – улучшенная;
  • точности: ВТ – высокая, АТ – повышенная, БТ – нормальная;
  • качеству поверхности: высокая и особо высокая, а также повышенная отделка;
  • виду кромки: О – обрезная, НО – необрезная;
  • виду отпуска потребителям: в рулонах и в листах.

2 Как изготавливается холоднокатаный листовой прокат?

Такой прокат получают из (их толщина может достигать 6 мм, минимум – 1,8 мм), которые подаются в рулонах на участок холодной прокатки. Исходный материал на своей поверхности имеет оксиды (окалину). Их требуется удалять в обязательном порядке, так как оксиды снижают качество поверхности х/к листа за счет вдавливания в него. Также окалина вызывает ранний выход из строя прокатных валков. Понятно, что первым этапом технологической операции выпуска холодного проката становится удаление с горячекатаных листов этой самой окалины по одной из двух методик:

  • механической: суть метода заключается в применении дробеструйной обработки поверхности полосы либо осуществлении ее пластической деформации;
  • химической: окалину растворяют в кислотах.

Как правило, сейчас оба указанных метода используются комбинированно. Сначала проводится механическая обработка листов (предварительный этап) в агрегатах пластического растяжения, затем – химическая (основной) в травильных ваннах, содержащих соляную или серную кислоту. Более эффективным выглядит травление с применением соляной кислоты. Она быстрее справляется с вредными оксидами, обладая большей активностью. Да и качество поверхности металла после ее использования получается намного лучше. Кроме всего прочего, в промывных ваннах она полнее и легче удаляется с полос, что снижает себестоимость холоднокатаного листового проката.

После протравки рулонный материал подается на непрерывный стан (с четырьмя либо пятью клетями) холодной прокатки, в составе которого есть:

  • разматыватели;
  • ножницы;
  • моталки;
  • петлеобразующий механизм;
  • стыкосварочный агрегат;
  • летучие ножницы.

На цепном транспортере стальные рулоны отправляются в разматыватель, где они затягиваются в тянущие ролики. Оттуда полосы уходят на валки клети, оснащенной комплексом регулирования толщины полосы и нажимной гидромеханической установкой (гидроцилиндры, нажимной винт, толщиномер, месдоза, насос, регулирующее и управляющее устройство).

Полосы проходят через все клети, предусмотренные на стане, в которых выполняется их обжатие по заданным параметрам, а затем отправляются на барабан моталки (намотка на него осуществляется при помощи захлестывателя). После этого оборудование начинает функционировать на полную мощность со скоростью прокатки не менее 25 метров в секунду (все предыдущие операции производятся на скорости до 2 м/с, которую именуют заправочной). Когда в разматывателе остается не более двух витков полосы, стан вновь переводится в режим заправочной скорости.

Чтобы восстановить пластичность стали и устранить наклеп на холоднокатаных листах (он после процедуры холодной деформации неизбежен), выполняют рекристаллизационный отжиг при температуре около 700 градусов Цельсия. Процедура проходит в протяжных печах (они работают по непрерывной схеме) либо в колпаковых.

Затем сталь подвергается дрессировке – небольшое (от 0,8 до 1,5 процентов) финальное обжатие, необходимое для придания х/к листам заданных параметров. Полосы толщиной от 0,3 мм дрессируются в один пропуск. Данная операция характеризуются следующими положительными свойствами:

  • увеличение прочности стали;
  • снижение коробоватости и волнистости металлических полос;
  • создание качественного микрорельефа поверхности;
  • уменьшение (незначительное) предела текучести.

Самое же главное, что после дрессировки на поверхности листов не появляются линии сдвига (в противном случае они обязательно проступают в процессе штамповки).

3 Возможные дефекты при производстве листов методом холодной прокатки

Изъяны х/к листов отличаются разнообразием, зачастую они присущи определенному типу холоднокатаной продукции. В связи с тем, что толщина таких листов существенно меньше, чем у горячекатаных, чаще всего их дефекты связаны с волнистостью, продольной и поперечной разнотолщинностью, коробоватостью и некоторыми другими факторами, обусловленными несоблюдением точности форм и параметров проката. Разнотолщинность, в частности, вызывается следующими причинами:

  • прокатка без требуемого натяжения конца полосы;
  • изменение (из-за нагрева) сечения валков и температуры заготовки;
  • неоднородная структура валков.

Нередко встречается и такой дефект, как нарушение сплошности стали (появление плены, трещин, дыр, расслоений, рваной кромки). Он обычно обусловлен невысоким качеством начальной заготовки. Также достаточно часто фиксируются отклонения по физико-химическим параметрам и структуре металла, которые возникают из-за нарушения режимов термообработки листов.

    непрерывные станы с числом клетей 4-5-6.

Одноклетевые многовалковые реверсивные станы

Эти станы используют для прокатки небольших партий листов широкого сортамента, особенно из труднодеформируемых марок сталей. Станы просты в настройке, прокатку можно вести с любым числом проходов. В черной металлургии наиболее часто используют станы кварто и 20-ти валковые.

На одноклетевых станах применяют два способа прокатки:

Полистную прокатку ведут в клети кварто. Исходной заготовкой является горячекатаный травленный лист толщиной 3-10,5мм ; конечная толщина прокатываемых листов до 1,5мм .

Прокатка рулонной полосы. Прокатку ведут в 20-ти валковых станах с диаметром рабочих валковD p = 3-150мм , длиной бочкиL б = 60-1700мм .

В сортамент таких станов входят тонкие полосы толщиной 0,57-0,60 мм , шириной до 1700мм . Исходной заготовкой является травленная горячекатаная рулонная полоса толщиной 3-4мм . При прокатке лент толщиной 0,002-0,10мм исходной заготовкой является холоднокатаная полоса толщиной 0,03-1,0мм , прошедшая "светлый" отжиг.

Одноклетевые реверсивные станы оборудованы с передней и задней стороны моталками. Прокатку ведут за несколько проходов, перематывая полосу с одной моталки на другую, с большими натяжениями полосы между моталками и рабочей клетью с обязательным применением технологических смазок для снижения влияния сил трения на силу прокатки. На рис. 33 приведена схема двадцативалкового стана холодной прокатки полос.

Рис. 33. Схема двадцативалкового стана холодной прокатки:

1 – рабочие валки; 2 и 3 – промежуточные и опорные валки; 4 – измеритель толщины полосы; 5 и 7 – натяжные устройства; 6 – полоса; 8 – барабаны моталок

Стан имеет только два рабочих валка, деформирующих полосу. Остальные валки опорные и предназначены для уменьшения изгиба рабочих валков.

Непрерывные станы холодной прокатки тонких полос

Непрерывные станы применяют при значительных объемах производства сравнительно узкого сортамента полос. Современные непрерывные станы состоят из 5-6-ти нереверсивных клетей кварто, полоса одновременно находится во всех клетях. В каждой клети производится только один проход. Непрерывные станы снабжены с передней стороны разматывателем, с задней – моталкой.

Подкатом для непрерывных станов холодной прокатки являются горячекатаные предварительно травленые рулоны со смазанной поверхностью. Горячекатаную рулонную полосу получают с непрерывных широкополосных станов горячей прокатки. Толщина подката составляет в зависимости от толщины готовой продукции 2-6 мм .

При холодной прокатке возникают большие давления металла на валки из-за упрочнения металла в процессе деформации и большого влияния сил внешнего трения. Холодную прокатку рулонной полосы ведут со значительным натяжением полосы между клетями и между последней клетью и моталкой с обязательным применением технологических смазок. Натяжение полосы обеспечивает значительное уменьшение давления металла на валки, что позволяет прокатывать полосу с высокими обжатиями за каждый проход и способствует плотному сматыванию полосы на моталку и устойчивому положению ее между валками, полоса не смещается вдоль бочки валка. Применение технологических смазок приводит к снижению влияния сил трения, уменьшению давления металла на валки.

На 5-ти клетевых непрерывных станах прокатывают полосы толщиной 0,2-3,5 мм , на 6-ти клетевых толщиной 0,18-1,0мм . Ширина прокатываемых на этих станах полос – до 1200мм .

На непрерывных станах применяют два способа прокатки:

Порулонную прокатку полос. Каждый рулон прокатывается отдельно.

Бесконечную прокатку рулонной полосы. Смежные рулоны перед прокаткой сваривают в стык.

Схемы непрерывных станов порулонной прокатки и бесконечной прокатки приведены на рис. 34.

Рис. 34. Схемы непрерывных станов порулонной (а ) и

бесконечной (б ) прокатки:

1 – разматыватели;2 – рабочие клети;3 – моталки;4 – ножницы;5 – стыкосварочная машина;6 – петлеобразующее устройство;7 – летучие ножницы

При порулонной прокатке (рис. 34, а ) травленные горячекатаные рулоны со склада подают краном на транспортер перед станом холодной прокатки, с которого по одному подают к разматывателю. Затем опускается рычаг с электромагнитом, магнит притягивает конец рулона, приподнимает его и подает в задающие ролики. Эти ролики подают полосу далее во вводную проводку, которая зажимает и задает ее в валки первой клети.

Процесс прокатки начинается на малой заправочной скорости 0,5-1,0 м /с . Полоса задается в первую клеть, пропускается через валки всех клетей и направляется на барабан моталки. При образовании на барабане моталки 2-3 витков рулона стан разгоняют до рабочей скорости 30-40м /с . При прохождении через валки заднего конца полосы скорость вновь снижают. Поскольку большая часть полосы прокатывается с переменной скоростью, то это приводит к изменению условий прокатки, силы прокатки, упругой деформации клети, а в конечном итоге к изменению толщины полосы по ее длине.

Значительное улучшение качества полосы достигается на станах бесконечной прокатки (рис. 34, б ), на которых в потоке перед станом концы рулонов, подготовленных для прокатки, свариваются. В результате сокращаются операции заправки переднего конца, скорость прокатки снижается только при прохождении через валки сварных швов, соответственно повышается производительность и сокращается расходный коэффициент металла. Непрерывность процесса в момент сварки концов смежных рулонов, требующих остановки полос, обеспечивается наличием петлевого накопителя 6 . Когда процесс сварки рулонов заканчивается, вновь создается петлевое накопление полосы, по выходе из последней клети полоса разрезается летучими ножницами 7 и сматывается на моталках 3 .