Где используются лампы накаливания. Виды электрических ламп. Из чего состоит вольфрамовая лампочка

Лампа накаливания – электрический осветительный прибор, принцип действия обусловлен нагревом до высоких температур нити тугоплавкого металла. Тепловой эффект тока известен давно (1800 год). С течением времени вызывает сильный нагрев (выше 500 градусов Цельсия), заставляя нить светиться. В стране вещички носят имя Ильича, на деле продвинутые историки бессильны однозначно дать ответ, кого назвать изобретателем лампы накаливания.

Конструкция ламп накаливания

Изучим строение прибора:

История создания ламп накаливания

Спирали далеко не сразу стали изготавливать из вольфрама. Применялись графит, бумага, бамбук. Много людей шло параллельным путем, создавая лампы накаливания.

Бессильны привести список 22 имен ученых, называемых зарубежными писателями авторами изобретения. Неправильно приписывать заслуги Эдисону, Лодыгину. Сегодня лампы накаливания далеки от совершенства, стремительно теряют маркетинговую привлекательность. Превышение амплитуды питающего напряжения на 10% (половину пути – 5% – РФ проделала в 2003 году, подняв вольтаж) номинала сокращает срок службы вчетверо. Снижение параметра закономерно урезает отдачу светового потока: 40% теряется при эквивалентном относительном изменении характеристик питающей сети в меньшую сторону.

Пионерам гораздо хуже. Джозеф Сван (Joseph Swan) отчаялся добиться достаточной разреженности воздуха колбы лампы накала. Насосы (ртутные) того времени неспособны выполнить задачу. Нить сгорала посредством сохранившегося внутри кислорода.

Смысл ламп накала довести спирали до степени нагрева, тело начинает светиться. Сложностей добавляло отсутствие в середине XIX века высокоомных сплавов – квота преобразования силы электрического тока сформирована увеличенным сопротивлением проводящего материала.

Усилия ученых мужей ограничивались следующими направлениями:

  1. Выбор материала нити. Критериями выступали одновременно высокое сопротивление, устойчивость к горению. Волокна бамбука, являющегося изолятором, покрывали тонким слоем проводящего графита. Малая площади проводящего слоя угля повышало сопротивление, давая нужный результат.
  2. Однако древесная основа быстро воспламенялась. Вторым направлением считаем попытки создать полный вакуум. Кислород известен с конца XVIII века, ученые мужи быстро доказали: элемент участвует в горении. В 1781 году Генри Кавендиш определил состав воздуха, начиная разрабатывать лампами накала, слуги науки ведали: земная атмосфера разрушает нагретые тела.
  3. Важно передать напряжение нити. Шла работа, преследующая цели создания разъемных, контактных частей цепи. Понятно, тонкий слой угля снабжен большим сопротивлением, как подвести электричество? Трудно поверить, пытаясь достичь приемлемых результатов, использовали ценные металлы: платина, серебро. Получая приемлемую проводимость. Недешевыми путями удавалось избежать нагрева внешней цепи, контактов, нить накалялась.
  4. Отдельно отметим резьбу цоколя Эдисона, используемую поныне (Е27). Удачная идея, легшая в основу быстро заменяемых лампочек накала. Прочие способы создания контакта, наподобие пайки, мало годятся. Соединение способно распасться, разогретое действием тока.

Стеклодувы XIX века достигли профессиональных высот, колбы изготавливали запросто. Отто фон Герике, конструируя генератор статического электричества, рекомендовал сферическую колбу залить серой. Материал застынет – стекло разбить. Получался идеальный шар, при трении собирал заряд, отдавая стальному стержню, проходящему через центр конструкции.

Пионеры отрасли

Можете прочесть: идея подчинить электричество целям освещения впервые реализована сэром Гемфри Дэви. Вскоре после создания вольтова столба ученый вовсю экспериментировал с металлами. Выбрал благородную платину за высокую температуру плавления – прочие материалы воздухом быстро окислялись. Попросту сгорали. Источник света вышел неяркий, давая основу сотням последующих наработок, показав направление движения желающим получить конечный результат: осветить, заручившись помощью электричества.

Произошло в 1802 году, ученому исполнилось 24 года, позже (1806) Гемфри Дэви представил суду общественности вполне работоспособный разрядный осветительный прибор, в конструкции которого ведущую роль занимали два угольных стрежня. Следует отнести короткую жизнь столь блистательного светила небосвода науки, давшего миру представление о хлоре, йоде, ряде щелочных металлов, на постоянные эксперименты. Смертельные опыты по вдыханию угарного газа, работы с оксидом азота (мощным отравляющим веществом). Авторы отдали честь блистательным подвигам, сократившим жизнь ученого.

Гемфри забросил, вырезав целое десятилетие исследований осветительных приборов, вечно занятый. Сегодня Дэви называют отцом электролиза. Трагедия 1812 года Felling Colliery наложила глубокий отпечаток, помрачив сердца многих. Сэр Гемфри Дэви пополнил ряды занявшихся разработкой безопасного источника света, уберегающего шахтёров. Электричество подходило мало, не существовало мощных надежных источников энергии. Чтобы рудничный газ перестал взрываться временами, применялись разные меры, наподобие металлической сетки-диффузора, препятствующей распространению пламени.

Сэр Гемфри Дэви сильно опередил время. Лет примерно на 70. Конец XIX века лавинообразно выдал новые конструкции, призванные вырвать человечество из вечной тьмы, благодаря использованию электричества. Одним из первых Дэви отметил зависимость сопротивления материалов от температуры, позволяя позже Георгу Ому получить . Спустя полвека открытие было положено в основу создания Карлом Вильгельмом Сименсом первого электронного термометра.

6 октября 1835 года Джеймс Боумэн Линдсей продемонстрировал лампочку накала, окруженную стеклянной колбой для защиты от действия атмосферы. Как выразился изобретатель: можно было читать книгу, рассеивая темноту на расстоянии полутора футов от подобного источника. Джеймс Боумэн, считают общепризнанные источники, является автором идеи защиты нити накала стеклянной колбой. Правда?

Склонны утверждать, в этом месте мировая история немного запуталась. Первый эскиз подобного устройства датируется 1820 годом. Приписывается почему-то Уорену де ла Ру. Которому было… 5 лет от роду. Одинокий исследователь заметил несуразицу, поставив дату… 1840 год. Бессилен детсадовец сделать столь великое изобретение. Причем забылись впопыхах демонстрации Джеймса Боумэна. Многие исторические книги (одна 1961 года, авторства Льюиса) так трактовали неведомо уже откуда взявшуюся картинку. Видимо, автор ошибся, другой источник, 1986 года Джозефа Стоера, относит изобретение на счет Августа Артура де ла Рива (1801 года рождения). Гораздо лучше соответствует действительности, объясняя демонстрации Джеймса Боумэна пятнадцатью годами позже.

Прошло незамеченным русскоязычным доменом. Английские источники проблема трактуют следующим образом: имена де ла Ру и де ла Рив явно перепутаны, касаться могут минимум четырех личностей. Физики Уорен де ла Ру, Август Артур де ла Рив упомянуты, первый в 1820 году посещал детсад, образно говоря. Прояснить историю могут отцы упомянутых мужей: Томас де ла Ру (1793 – 1866), Чарльз Гаспар де ла Рив (1770 – 1834). Неизвестный джентльмен (леди) провел целое исследование, убедительно доказал: ссылка на фамилию де ла Ру несостоятельна, сослался горой научной литературы начала XX – конца XIX века.

Неизвестный потрудился просмотреть патенты Уорена де ла Ру, набралось девять штук. Лампы накала описываемой конструкции отсутствуют. Августа Артура де ла Рива, начавшего публикацию научных трудов в 1822 году, сложно представить изобретающим стеклянную колбу. Посещал Англию – родину лампочки накала – исследовал электричество. Желающие могут написать автору статьи англоязычного сайта по электронной почте [email protected]. Пишет “ежков”: с удовольствием примет к сведению информацию, касающуюся вопроса.

Истинный изобретатель лампочки накала

Достоверно известно, в 1879 году Эдисон запатентовал (US Patent 223898) первую лампочку накала. Потомки зафиксировали событие. Касаемо более ранних публикаций, авторство вызывает сомнение. Неизвестен подаривший миру коллекторный двигатель. Сэр Гемфри Дэви отказался брать патент на изобретенный безопасный фонарь для шахты, сделав изобретение общедоступным. Подобные прихоти создают немалую путаницу. Бессильны выяснить, кто первым придумал помещать нить накала внутрь стеклянной колбы, обеспечив работоспособность конструкции, используемой повсеместно.

Лампы накаливания выходят из моды

Лампа накаливания использует вторичный принцип производства света. Достигает высокой температуры нить. КПД устройств мал, большая часть энергии расходуется впустую. Современные нормы диктуют стране беречь энергию. В моде разрядные, светодиодные лампочки. Навсегда остались в памяти Гемфри Дэви, де ла Ру, де ла Рив, Эдисон, приложившие руку, потрудившиеся вырвать человечество из тьмы.

Обратите внимание, Чарльз Гаспар де ла Рив скончался в 1834 году. Следующей осенью прошла первая публичная демонстрация… Некто нашел записи погибшего исследователя? Вопрос разрешит время, ибо все тайное откроется. Читатели обратили внимание: неизвестная сила подталкивала Дэви попробовать использовать защитную колбу, помогая шахтерам. Сердце ученого оказалось чересчур большим увидеть явный намек. Нужной информацией англичанин обладал…

Лампа накаливания – первый электрический осветительный прибор, играющий важную роль в жизнедеятельности человека. Именно она позволяет людям заниматься своими делами независимо от времени суток.

По сравнению с остальными источниками света такое устройство характеризуется простотой конструкции. Световой поток излучается вольфрамовой нитью, расположенной внутри стеклянной колбы, полость которой заполнена глубоким вакуумом. В дальнейшем для увеличения долговечности вместо вакуума в колбу стали закачивать специальные газы - так появились галогеновые лампы. Вольфрам - термостойкий материал с большой температурой плавления. Это очень важно, поскольку для того, чтобы человек увидел свечение, нить должна сильно нагреться за счет проходящего через нее тока.

История создания

Интересно, что в первых лампах использовался не вольфрам, а ряд других материалов, включая бумагу, графит и бамбук. Поэтому, несмотря на то, что все лавры за изобретение и усовершенствование лампы накаливания принадлежат Эдисону и Лодыгину, приписывать все заслуги только им - неправильно.

Писать о неудачах отдельных ученых не станем, но приведем основные направления, к которым прилагали усилия мужи того времени:

  1. Поиски лучшего материала для нити накаливания. Нужно было найти такой материал, который одновременно был устойчив к возгоранию и характеризовался высоким сопротивлением. Первая нить была создана из волокон бамбука, которые покрывались тончайшим слоем графита. Бамбук выступал в качестве изолятора, графит - токопроводящей среды. Поскольку слой был малым, то существенно возрастало сопротивление (что и требовалось). Все бы хорошо, но древесная основа угля приводила к быстрому воспламенению.
  2. Далее исследователи задумались над тем, как создать условия строжайшего вакуума, ведь кислород - важный элемент для процесса горения.
  3. После этого нужно было создать разъемные и контактные компоненты электрической цепи. Задача усложнялась из-за использования слоя графита, характеризующегося высоким сопротивлением, поэтому ученым пришлось использовать драгоценные металлы - платину и серебро. Так повышалась проводимость тока, но стоимость изделия была чересчур высока.
  4. Примечательно, что резьба цоколя Эдисона используется и по сей день - маркировка E27. Первые способы создания контакта включали пайку, но при таком раскладе сегодня говорить о быстро заменяемых лампочках было бы сложно. А при сильном нагреве подобные соединения быстро бы распадались.

В наше время популярность подобных ламп падает в геометрической прогрессии. В 2003 году в России была увеличена амплитуда питающего напряжения на 5 %, к сегодняшнему дню этот параметр составляет уже 10 %. Это привело к сокращению срока эксплуатации лампы накаливания в 4 раза. С другой стороны, если вернуть напряжение на эквивалентное значение вниз, то существенно сократится отдача светового потока - до 40 %.

Вспомните учебный курс - еще в школе преподаватель физики ставил опыты, демонстрируя, как увеличивается свечение лампы при повышении силы тока, подающегося на вольфрамовую нить. Чем выше сила тока, тем сильнее выброс излучения и больше тепла.

Принцип действия

Принцип работы лампы построен на сильном нагреве нити накаливания за счет проходящего через нее электрического тока. Для того чтобы твердотельный материал начал излучать красное свечение, его температура должна достигнуть 570 град. Цельсия. Излучение будет приятным для глаз человека только при увеличении этого параметра в 3–4 раза.

Подобной тугоплавкостью характеризуются немногие материалы. За счет доступной ценовой политики выбор был сделан в пользу вольфрама, температура плавления которого составляет 3400 град. Цельсия. Чтобы повысить площадь светового излучения, вольфрамовая нить скручивается в спираль. В процессе эксплуатации она может нагреваться до 2800 град. Цельсия. Цветовая температура такого излучения равна 2000–3000 К, что дает желтоватый спектр - несопоставимый с дневным, но в то же время не оказывающий негативного воздействия на зрительные органы.

Попадая в воздушную среду, вольфрам быстро окисляется и разрушается. Как уже говорилось выше, вместо вакуума стеклянная колба может заполняться газами. Речь идет об инертных азоте, аргоне или криптоне. Это позволило не только повысить долговечность, но и увеличить силу свечения. На срок эксплуатации влияет то, что давление газа препятствует испарению вольфрамовой нити из-за высокой температуры свечения.

Строение

Обычная лампа состоит из следующих конструктивных элементов:

  • колба;
  • вакуум или инертный газ, закачиваемый внутрь нее;
  • нить накала;
  • электроды - выводы тока;
  • крючки, необходимые для удерживания нити накала;
  • ножка;
  • предохранитель;
  • цоколь, состоящий из корпуса, изолятора и контакта на донышке.

Помимо стандартных исполнений из проводника, стеклянного сосуда и выводов, существуют лампы специального назначения. В них вместо цоколя используются другие держатели или добавляется дополнительная колба.

Предохранитель обычно изготавливается из сплава феррита и никеля и помещается в разрыв на одном из выводов тока. Зачастую он расположен в ножке. Его основное предназначение - защита колбы от разрушения в случае обрыва нити. Связано это с тем, что в случае ее обрыва образуется электрическая дуга, приводящая к плавлению остатков проводника, которые попадают на стеклянную колбу. Из-за высокой температура она может взорваться и вызвать возгорание. Впрочем, долгие годы доказали низкую эффективность предохранителей, поэтому они стали эксплуатироваться реже.

Колба

Стеклянный сосуд используется для защиты нити накаливания от окисления и разрушения. Габаритные размеры колбы подбирают в зависимости от скорости осаждения материала, из которого производится проводник.

Газовая среда

Если раньше вакуумом заполнялись все без исключения лампы накаливания, то сегодня такой подход применяют лишь для маломощных источников света. Более мощные устройства заполняются инертным газом. Молярная масса газа влияет на излучение тепла нитью накаливания.

В колбу галогенных ламп закачиваются галогены. Вещество, которым покрыта нить накала, начинает испаряться и взаимодействовать с расположенными внутри сосуда галогенами. В результате реакции образуются соединения, которые повторно разлагаются и вещество вновь возвращается на поверхность нити. Благодаря этому появилась возможность повысить температуру проводника, увеличив коэффициент полезного действия и срок эксплуатации изделия. Также такой подход позволил сделать колбы более компактными. Недостаток конструкции связан с изначально малым сопротивлением проводника при подаче электрического тока.

Нить накала

По форме нить накаливания может быть разной - выбор в пользу той или иной связан со спецификой лампочки. Зачастую в них применяют нить с круглым сечением, закрученную в спираль, гораздо реже - ленточные проводники.

Современная лампа накаливания работает от нити из вольфрама или осмиево-вольфрамового сплава. Вместо обычных спиралей могут закручиваться биспирали и триспирали, что стало возможным за счет повторного закручивания. Последнее приводит к уменьшению теплового излучения и повышению КПД.

Технические характеристики

Интересно наблюдать за зависимостью световой энергии и мощности лампы. Изменения не линейны - до 75 Вт световая отдача увеличивается, при превышении - снижается.

Одно из преимуществ таких источников света – равномерное освещение, поскольку практически во всех направлениях свет излучается с одинаковой силой.

Еще одно достоинство связано с пульсированием света, которое при определенных значениях приводит к значительной утомляемости глаз. Нормальным значением считают коэффициент пульсации, не превышающий 10 %. Для ламп накаливания параметр максимум достигает 4 %. Самый худший показатель - у изделий мощностью 40 Вт.

Среди всех доступных электрических осветительных приборов лампы накаливания нагреваются сильнее. Большая часть тока преобразуется в тепловую энергию, поэтому прибор больше похож на обогреватель, чем на источник света. Световая отдача находится в диапазоне от 5 до 15 %. По этой причине в законодательстве прописаны определенные нормы, запрещающие, к примеру, использовать лампы накаливания более 100 Вт.

Обычно для освещения одной комнаты достаточно лампы на 60 Вт, которая характеризуется небольшим нагревом.

При рассмотрении спектра излучения и сравнении его с естественным освещением можно сделать два важных замечания: световой поток таких ламп содержит меньше синего и больше красного света. Тем не менее, результат считается приемлемым и не приводит к утомлению, как в случае с источниками дневного света.

Эксплуатационные параметры

При эксплуатации ламп накаливания важно учитывать условия их использования. Их можно применять в помещениях и на открытом воздухе при температуре не менее –60 и не более +50 град. Цельсия. При этом влажность воздуха не должна превышать 98 % (+20 град. Цельсия). Устройства могут работать в одной цепи с диммерами, предназначенными для регулирования световой отдачи за счет изменения интенсивности света. Это дешевые изделия, которые могут быть самостоятельно заменены даже неквалифицированным человеком.

Виды

Существует несколько критериев для классификации ламп накаливания, которые будут рассмотрены ниже.

В зависимости от эффективности освещения лампы накаливания бывают (от худших к лучшим):

  • вакуумные;
  • аргоновые или азот-аргоновые;
  • криптоновые;
  • ксеноновые или галогенные с установленным отражателем инфракрасного излучения внутрь лампы, что увеличивает КПД;
  • с покрытием, предназначенным для преобразования инфракрасного излучения в видимый спектр.

Намного больше разновидностей ламп накаливания, связанных с функциональным назначением и конструктивными особенностями:

  1. Общее назначение - в 70-х гг. прошлого столетия они назывались «нормально-осветительными лампами». Самая распространенная и многочисленная категория - изделия, применяемые для общего и декоративного освещения. С 2008 года выпуск таких источников света существенно сократился, что было связано с принятием многочисленных законов.
  2. Декоративное назначение. Колбы таких изделий выполняются в форме изящных фигур. Чаще всего встречаются свечеобразные стеклянные сосуды с диаметром до 35 мм и сферические (45 мм).
  3. Местное назначение. По конструкции идентичны первой категории, но питаются от уменьшенного напряжения - 12/24/36/48 В. Обычно применяются в переносных светильниках и приборах, освещающих верстаки, станки и т. п.
  4. Иллюминационные с окрашенными колбами. Зачастую мощность изделий не превышает 25 Вт, а для окрашивания внутренняя полость покрывается слоем неорганического пигмента. Гораздо реже можно встретить источники света, наружная часть которых окрашивается цветным лаком. В таком случае пигмент очень быстро выцветает и осыпается.

  1. Зеркальные. Колба выполнена в специальной форме, которая покрыта отражающим слоем (к примеру, методом распыления алюминия). Данные изделия используются для перераспределения светового потока и повышения эффективности освещения.
  2. Сигнальные. Их устанавливают в светосигнальные изделия, предназначенные для отображения какой-либо информации. Характеризуются низкой мощностью и рассчитаны на продолжительную эксплуатацию. На сегодняшний день практически бесполезны из-за доступности светодиодов.
  3. Транспортные. Еще одна обширная категория ламп, используемых в транспортных средствах. Характеризуются высокой прочностью, устойчивостью к вибрациям. В них применяют специальные цоколи, гарантирующие прочное крепление и возможность быстрой замены в стесненных условиях. Могут питаться от 6 В.
  4. Прожекторные. Высокомощные источники света до 10 кВт, характеризующиеся высокой световой отдачей. Спираль укладывается компактно, чтобы обеспечить лучшую фокусировку.
  5. Лампы, применяемые в оптических приборах, - к примеру, кинопроекционная или медицинская техника.

Специальные лампы

Также существуют более специфические разновидности ламп накаливания:

  1. Коммутаторные - подкатегория сигнальных ламп, применяемых в коммутаторных панелях и выполняющих функции индикаторов. Это узкие, продолговатые и малогабаритные изделия, имеющие параллельные контакты гладкого типа. За счет этого могут помещаться в кнопки. Маркируются как «КМ 6-50». Первое число указывает на вольтаж, второе - ампераж (мА).
  2. Перекальная, или фотолампа. Данные изделия используются в фототехнике для нормированного форсированного режима. Характеризуется высокими световой отдачей и цветовой температурой, но малым сроком эксплуатации. Мощность советских ламп достигала 500 Вт. В большинстве случаев колба матируется. Сегодня практически не используются.
  3. Проекционные. Применялись в диапроекторах. Высокая яркость.

Двухнитевая лампа бывает нескольких разновидностей:

  1. Для автомобилей. Одна нить используется для ближнего, другая - для дальнего света. Если рассматривать лампы для задних фонарей, то нити могут использоваться для стоп-сигнала и габаритного огня соответственно. Дополнительный экран может отсекать лучи, которые в лампе ближнего света могут слепить водителей встречных автомобилей.
  2. Для самолетов. В посадочной фаре одна нить может использоваться для малого света, другая - для большого, но требует внешнего охлаждения и непродолжительной эксплуатации.
  3. Для железнодорожных светофоров. Две нити необходимы для повышения надежности - если перегорит одна, то будет светиться другая.

Продолжим рассматривать специальные лампы накаливания:

  1. Лампа-фара - сложная конструкция для подвижных объектов. Используется в автомобильной и авиационной технике.
  2. Малоинерционная. Содержат тонкую нить накаливания. Применялась в звукозаписывающих системах оптического типа и в некоторых видах фототелеграфа. В наше время используется редко, поскольку есть более современные и улучшенные источники света.
  3. Нагревательная. Применяется в качестве источника тепла в лазерных принтерах и копирах. Лампа имеет цилиндрическую форму, закрепляется во вращающемся металлическом валу, к которому прикладывается бумага с тонером. Вал передает тепло, что приводит к расплыванию тонера.

КПД

Электрический ток в лампах накаливания преобразуется не только в видимый для глаза свет. Одна часть идет на излучение, другая трансформируется в тепло, третья - на инфракрасный свет, который не фиксируется зрительными органами. Если температура проводника составляет 3350 К, то КПД лампы накаливания составит 15 %. Обычная лампа на 60 Вт с температурой 2700 К характеризуется минимальным КПД - 5 %.

Коэффициент полезного действия усиливается степенью нагрева проводника. Но чем выше будет нагрев нити, тем меньше срок эксплуатации. К примеру, при температуре 2700 К лампочка просветит 1000 часов, 3400 К - в разы меньше. Если повысить напряжение питания на 20 %, то свечение усилится в два раза. Это нерационально, поскольку срок эксплуатации сократится на 95 %.

Плюсы и минусы

С одной стороны, лампы накаливания являются самыми доступными источниками света, с другой – характеризуются массой недостатков.

Преимущества:

  • низкая стоимость;
  • нет необходимости в применении дополнительных приспособлений;
  • простота использования;
  • комфортная цветовая температура;
  • устойчивость к повышенной влажности.

Недостатки:

  • недолговечность - 700–1000 часов при соблюдении всех правил и рекомендаций по эксплуатации;
  • слабая световая отдача - КПД от 5 до 15 %;
  • хрупкая стеклянная колба;
  • возможность взрыва при перегреве;
  • высокая пожарная опасность;
  • перепады напряжения существенно сокращают срок эксплуатации.

Как увеличить срок службы

Существует несколько причин, по которым может уменьшиться срок эксплуатации данных изделий:

  • перепады напряжения;
  • механические вибрации;
  • высокая температура окружающей среды;
  • разрыв соединения в проводке.
  1. Выберите изделия, которые подходят для диапазона напряжения сети.
  2. Перемещение осуществляйте строго в выключенном состоянии, поскольку из-за малейших вибраций изделие выйдет из строя.
  3. Если лампы продолжают перегорать в одном и том же патроне, то его нужно заменить или починить.
  4. При эксплуатации на лестничной площадке в электрическую цепь добавьте диод или включите параллельно две лампы одной мощности.
  5. На разрыв цепи питания можно добавить устройство для плавного включения.

Технологии не стоят на месте, постоянно развиваются, поэтому сегодня на смену традиционным лампам накаливания пришли более экономичные и долговечные светодиодные, люминесцентные и энергосберегающие источники света. Главными причинами выпуска ламп накаливания остается наличие менее развитых с технологической точки зрения стран, а также хорошо налаженное производство.

Приобретать такие изделия сегодня можно в нескольких случаях - они хорошо вписываются в дизайн дома или квартиры, либо вам нравится мягкий и комфортный спектр их излучения. Технологически - это давно устаревшие изделия.

После замыкания цепи (например, при нажатии выключателя) электрический ток начинает проходить через тело накала, которое при достижении определенной температуры испускает видимое человеческим глазом излучение. При достижении температуры 570 о С человек способен увидеть в темноте излучаемое телом красное свечение, а стандартная рабочая температура нити в лампе накаливания находится в пределах 2000-2800 °C. Чем меньше температура тела накаливания, тем более «красным» будет выглядеть излучение (подробнее о цветопередаче написано в статье). Чтобы лучше понять принцип работы обычной лампочки, необходимо разобраться в конструкции и обязательных элементах, к которым относится колба, тело накала и токовводы.

Стандартная лампочка имеет грушевидную форму и состоит из следующих частей:

  • Колба . Изготавливается из натриево-кальциевого силикатного стекла, может быть прозрачной, матовой, молочной, опаловой, зеркальной (отражающей). Если лампочка используется без плафона в маленьком помещении, то обратите внимание на лампочки с матированной или молочной колбой, так как их световые потоки на 3% и 20% соответственно меньше чем световой поток прозрачных ламп. Также колбы могут покрываться с наружной стороны декоративными красителями, лаками, керамикой.
  • Буферный газ (полость колбы). Для предотвращения окисления спирали (тела накала) из колбы выкачивают воздух, создавая внутри вакуум. Однако сегодня вакуум используется только в маломощных лампочках, а большинство современных моделей наполнены инертным газом, который увеличивает силу свечения. По составу газовой среды лампы накаливания можно разделить на: вакуумные, газонаполненные (ксенон, криптон, смесь азота с аргоном и т.д.), галогенные.
  • Тело накала . Чаще всего изготавливается из проволоки круглого сечения, реже – из ленточного металла. В первых моделях лампочек применялась угольная нить, в современных – спираль из вольфрама или осмиево-вольфрамового сплава.
  • Токовые вводы (свинцовая проволока).
  • Держатели тела накала (молибденовые держатели).
  • Ножка (штенгель и ножка лампы).
  • Внешнее звено токоввода .
  • Плавкая вставка (предохранитель)
  • Корпус цоколя .
  • Стеклянный изолятор цоколя .
  • Контакт донышка цоколя .

Какие бывают виды/типы ламп накаливания?

Классификация ламп накаливания довольно разветвленная, так как учитывает множество характеристик.

По виду цоколя самыми распространенными являются резьбовые и штырьковые. В быту чаще всего можно встретить резьбовой цоколь Эдисона, обозначающийся буквой Е, возле которой пишется его диаметр в миллиметрах, например, Е10, Е14, Е27 и Е40.

По форме колбы лампочки накаливания бывают разнообразными, начиная со стандартных грушевидных, заканчивая фигурными, витыми и др. В некоторых случаях размер и форма колбы (а также наличие светоотражающих участков) связаны с тем, где применяется лампа накаливания, в других же случаях это связано с декоративной функцией.

Лампы накаливания: характеристики и маркировка

Чтобы знать, как выбрать лампу накаливания, необходимо научиться читать ее маркировку, которая представляет собой сочетание букв и цифр. Буквенная часть маркировки указывает на свойства и конструкцию изделия, к примеру:

Б – биспиральная

БО – биспиральная с опаловой колбой, которая наполнена аргоном

БК – биспиральная, колба наполнена криптоном

ДБ – диффузная с матированием внутри колбы

В – вакуумная

Г — газонаполненная

О – с опаловой колбой

М – с молочной колбой

Ш – шаровидная

З – зеркальная (ЗК – концентрированная кривая света, ЗШ – расширенная кривая)

МО – применяемая для местного освещения

Цифрами указывается диапазон напряжения и мощность. Так, маркировку Б 220..230 60 можно расшифровать так: биспиральная лампа накаливания мощностью 60Вт, рассчитана на диапазон напряжений от 220 до 230 В.

Какие недостатки/преимущества у лампы накаливания?

К достоинствам лампочек накаливания можно отнести:

  • невысокую стоимость;
  • широкий диапазон мощностей;
  • бесперебойную работу при низком напряжении (со снижением интенсивности освещения);
  • устойчивость к незначительным перепадам напряжения (с возможным сокращением срока службы);
  • комфортную цветовую температуру (теплую);
  • возможность использовать во влажных помещениях;
  • простоту эксплуатации.

К недостаткам относится:

  • сильный нагрев (создание пожароопасной ситуации);
  • небольшой срок эксплуатации;
  • низкая светоотдача (КПД <4%)
  • зависимость светоотдачи от напряжения;
  • риск разрыва колбы;
  • хрупкость.

Как увеличить срок службы лампы накаливания?

Как уже было сказано ранее, предполагаемый производителем срок службы лампочек накаливания достигает в среднем 750-1000 часов, однако на практике перегорают они гораздо чаще. Это происходит из-за возникновения трещин и разрушения вольфрамовой нити (вследствие перегрева и испарения). Чтобы продлить срок эксплуатации лампы, следует для начала устранить возможные причины перегорания.

  1. Диапазон напряжений. Для разных ламп накаливания производители указывают не одно значение напряжения, а диапазон: 125..135, 220..230, 230..240В и т.д. Если напряжение в вашей квартирной цепи превышает указанные значение, то лампа будет перегорать быстрее, поэтому при напряжении 230В нельзя выбирать лампочку с параметрами 215..220В. Так, если напряжение выше всего на 6%, срок службы уменьшится вдвое.
  2. Вибрации. В условиях вибраций нить накала быстрее растрачивает свой ресурс, поэтому при пользовании переносными устройствами лучше осуществлять перемещения с выключенной лампочкой.
  3. Патрон. Если вы заметили, что лампочки чаще всего перегорают в одном и том же патроне, тогда следует заменить его или же проверить контакты. Также следует ставить в люстру с несколькими патронами лампы одинаковые по мощности.
  4. Понижение напряжения. Если понизить напряжение в сети всего на 8%, лампочка будет служить в 3,5 раза дольше. Для понижения можно подключить последовательно с лампой полупроводниковый диод.

Самая долгогорящая лампочка накаливания имеет название «Столетняя лампа», находится она в пожарной части в Ливерморе (Калифорния). За счет работы на очень низкой мощности (4 ватта), толстой нити накала из углерода (в 8 раз толще, чем в обычных лампочках нашего времени), а также бесперебойному использованию без выключений и включений она работает там с 1901 года.

Как подключить лампу накаливания через диод

Чтобы продлить срок службы лампочки (а заодно и сэкономить на электричестве) можно подключить ее через диод. При выборе диода необходимо обратить внимание на такие его параметры, как максимальный прямой ток (+ в импульсе) и максимальное обратное напряжение. Чтобы облегчить задачу и не просчитывать все параметры, приведем табличку:

Для сборки конструкции понадобится:

  • 1 работающая лампочка Е27
  • 1 неработающая лампочка Е27 (или цоколь от нее);
  • диод;
  • паяльник.

Процесс сборки . Припаиваем диод к пятачку на цоколе рабочей лампочки. Аккуратно отделяем цоколь от сгоревшей лампочки, делаем в нем отверстие и продеваем сквозь него вторую «ножку» диода. Выведенный конец припаиваем к месту выведения, затем спаиваем между собой оба цоколя.

Более простой способ: подсоединить диод одним концом к клемме выключателя, а другим – к проводу, который ведет к лампочке.

Как диод продлевает срок службы лампочки накаливания?

В большинстве случаев нить накала перегорает в момент подачи питания (включения тумблера) из-за слишком быстрого нагревания холодной спирали. Полупроводниковый диод уменьшает ток и позволяет вольфраму нагреваться постепенно, с меньшей скоростью. Лампочка начинает заметно мерцать, так как ток проходит полуволнами.

Нагретое электрическим током тело может, оказывается, не только излучать тепло, но и светиться. Первые источники света функционировали именно на этом принципе. Рассмотрим, как работает лампа накаливания – самый массовый осветительный прибор в мире. И, хотя его со временем предстоит полностью заместить на компактные люминесцентные (энергосберегающие) и светодиодные источники света, без этой технологии человечеству еще долго не обойтись.

Конструкция лампы накаливания

Основным элементом лампочки является спираль из тугоплавкого материала – вольфрама. Для увеличения ее длины и, соответственно, сопротивления, она скручена в тонкую спираль. Это не видно невооруженным глазом.

Спираль укреплена на поддерживающих элементах, крайние из которых служат для присоединения ее концов к электрической цепи. Они изготовлены из молибдена, температура плавления которого выше температуры разогретой спирали. Один из молибденовых электродов соединяется с резьбовой частью цоколя, а другой – с его центральным выводом.

Молибденовые держатели удерживают вольфрамовую спираль

Из колбы, сделанной из стекла, выкачан воздух. Иногда внутрь вместо воздуха закачивают инертный газ, например, аргон или его смесь с азотом. Это необходимо для снижения теплопроводности внутреннего объема, в результате чего стекло менее подвержено нагреву. Дополнительно эта мера препятствует окислению нити накала. При изготовлении лампы воздух выкачивается через часть колбы, скрытую затем цоколем.

Принцип работы лампы накаливания основан на разогреве электрическим током ее нити до температуры, при которой она начинает излучать свет в окружающее пространство.

Лампы накаливания можно изготовить на мощность от 15 до 750 Вт. В зависимости от мощности применяются разные типы резьбовых цоколей: Е10, Е14, Е27 или Е40. Для декоративных, сигнальных и ламп подсветки используются цоколи ВА7S, ВА9S, ВА15S. Такие изделия при установке втыкаются внутрь патрона и поворачиваются на 90 градусов.

Помимо обычной, грушеобразной формы, выпускаются и декоративные лампы, у которых колба выполняется в форме свечи, капли, цилиндра, шара.

Лампа с колбой, не имеющей покрытия, светится желтоватым светом, по составу наиболее напоминающим солнечный. Но при нанесении на внутреннюю поверхность стекла специальных покрытий она может стать матовой, красной, желтой, синей или зеленой.

Интерес представляет устройство зеркальной лампы накаливания. На часть ее колбы нанесен отражающий слой. В результате, за счет отражения от него, световой поток перераспределяется в одном направлении.

Достоинства ламп накаливания

Самым важным плюсом в пользу применения лампочек накаливания является простота их изготовления и, соответственно, цена. Проще осветительного прибора придумать невозможно.

Лампы изготавливают на широкий диапазон мощностей и габаритных размеров. Все остальные современные источники света содержат устройства, преобразующие напряжение питания в необходимую для их работы величину. Хотя их и ухитряются впихнуть в стандартные габаритные размеры лампочки, но при этом усложняется конструкция, увеличивается количество деталей в составе устройства. А это не всегда улучшает показатели стоимости и надежности. Схема же включения лампы накаливания не требует никаких дополнительных элементов.

Светодиодные лампы вытеснили обычные из портативных устройств: переносных источников света, питающихся от батареек и аккумуляторов. При той же светоотдаче они потребляют меньший ток, а габаритные размеры светодиода еще меньше, чем лампочек, использующихся ранее в фонариках. Да и в составе елочных гирлянд они работают успешнее.

Стоит отметить еще одно достоинство, присущее лампочкам накаливания – их спектр свечения наиболее близок к солнечному, чем у всех остальных искусственных источников света. А это – большой плюс для зрения, ведь оно адаптировано именно к солнцу, а не монохромным светодиодам.

Из-за тепловой инерции разогретой нити накала свет от нее практически не пульсирует. Чего нельзя сказать об излучении от остальных устройств, особенно люминесцентных, использующих в качестве пускорегулирующего устройства обычный дроссель, а не полупроводниковую схему. Да и электроника, особенно дешевая, не всегда подавляет пульсации от сети должным образом. От этого тоже страдает зрение.

Но не только здоровью может повредить пульсирующий характер работы полупроводниковых устройств, использующихся в современных лампочках. Массовое их применение приводит к резкому изменению формы потребляемого от сети тока, что сказывается в итоге и на форме напряжения. Она настолько изменяется по отношению к изначальной (синусоидальной), что это сказывается на качестве работы других электроприборов в сети.

Недостатки ламп накаливания

Существенный недостаток лампочек накаливания, сокращающий их срок службы – зависимость его от величины питающего напряжения. При повышении напряжения износ нити накала происходит быстрее. Выпускают лампы на разные величины этого параметра (вплоть до 240 В), но при номинальном значении они светят хуже.

Понижение напряжения приводит к резкому изменению интенсивности свечения. А еще хуже воздействуют на осветительный прибор его колебания, при резких скачках лампа может и перегореть.

Но самое худшее – то, что нить накала рассчитана на длительную работу в нагретом состоянии. При нагревании ее удельное сопротивление увеличивается. Поэтому в момент включения, когда нить холодная, ее сопротивление намного меньше того, при котором происходит свечение. Это приводит к неизбежному скачку тока в момент зажигания, приводящему к испарению вольфрама. Чем больше количество включений – тем меньше проживет лампа.

Исправить ситуацию помогают устройства для плавного запуска или , позволяющие регулировать яркость свечения в широких пределах.

Самым главным недостатком лампочек накаливания считается их низкий коэффициент полезного действия. Подавляющая часть электроэнергии (до 96 %) расходуется на бесполезный нагрев окружающего воздуха и излучение в инфракрасном спектре. С этим поделать ничего нельзя – таков принцип действия лампы накаливания.

Ну и еще: стекло колбы легко разбить. Но в отличие от компактных люминесцентных, содержащих внутри небольшое количество паров ртути, разбитая лампа накаливания кроме возможного пореза ничем владельцу не угрожает.

Галогенные лампы

Причиной перегорания лампы накаливания является постепенное испарение фольфрама, из которого сделана нить. Она становится тоньше, а затем очередной скачок тока при включении расплавляет ее в самом тонком месте.

Этот недостаток призваны устранить галогенные лампы, заполняемые парами брома или йода. При горении испаряющийся вольфрам вступает в соединение с галогеном. Получившееся вещество не способно осаждаться на стенках колбы или других, относительно холодных, внутренних поверхностях.

Среди искусственных источников освещения самыми массовыми являются лампы накаливания. Везде, где есть электрический ток, можно обнаружить трансформацию его энергии в световую, и почти всегда для этого используются лампы накаливания. Разберемся, как и что в них накаливается, и какими они бывают.

Особенности конкретной лампы можно узнать, изучив индекс, выбитый на ее металлическом цоколе.
В индексе используются следующие цифро-буквенные обозначения:

  • Б - Биспиральная, аргоновое наполнение
  • БК - Биспиральная, криптоновое наполнение
  • В - Вакуумная
  • Г - Газополная, аргоновое наполнение
  • ДС, ДШ – Декоративные лампы
  • РН – различные назначения
  • А - Абажур
  • В - Витая форма
  • Д - Декоративная форма
  • Е - С винтовым цоколем
  • Е27 - Вариант исполнения цоколя
  • З - Зеркальная
  • ЗК - Концентрированное светораспределение зеркальной лампы
  • ЗШ - Широкое светораспределение
  • 215-230В - Шкала рекомендуемых напряжений
  • 75 Вт - Потребляемая мощность электроэнергии

Виды ламп накаливания и их функциональное назначение

  1. Лампы накаливания общего назначения
  2. По своему функциональному назначению наиболее распространенными являются лампы накаливания общего назначения (ЛОН). Все ЛОН, производимые в России должны соответствовать требованиям ГОСТ 2239-79. Их применяют для наружного и внутреннего, а также для декоративного освещения, в бытовых и промышленных сетях с напряжением 127 и 220 В и частотой 50 Гц.

    ЛОН имеют относительно недолгий срок, в среднем около 1000 часов, и невысокий КПД – они преобразуют в свет только 5% электроэнергии, а остальное выделяется в виде тепла.

    Особенностью маломощных (до 25 Вт) ЛОН является используемая в них, в качестве тела накала, угольная нить. Эта устаревшая технология использовалась еще в первых « » и сохранилась только здесь.

    Сейсмостойкие лампы, тоже входящие в группу ЛОН, конструктивно способны выдерживать сейсмический удар длительностью до 50 мс.
  3. Лампы накаливания прожекторные
  4. Прожекторные лампы накаливания отличаются значительно большей, по сравнению с остальными видами, мощностью и предназначены для направленного освещения или подачи световых сигналов на дальние расстояния. Согласно ГОСТу их разделяют на три группы: лампы кинопроекционные (ГОСТ 4019-74), для прожекторов общего назначения (ГОСТ 7874-76) и маячные лампы (ГОСТ 16301-80).

    Использование трехжильной проводки в домашней сети обеспечивает высокий уровень пожаробезопасности и уменьшает риски для жизни человека. В решении вопроса — — достаточно следовать элементарным правилам и схеме установки.

    Для оборудования электрических сетей жилых помещений средствами безопасности необходимо сделать выбор между установкой УЗО или дифавтомата. Помочь в этом сможет . Установить дифавтомат можно несколькими методами, о которых можно прочитать .

    Тело накала в прожекторных лампах длиннее и при этом расположено более компактно, для усиления габаритной яркости и последующей фокусировки светового потока. Задачу фокусировки решают специальные фокусирующие цоколи, предусмотренные в некоторых моделях, либо оптические линзы в конструкциях прожекторов и маяков.

    Максимальная мощность выпускаемых сегодня в России прожекторных ламп составляет 10 кВт.

  5. Лампы накаливания зеркальные
  6. Зеркальные лампы накаливания отличают особая конструкция колбы и светоотражающий алюминиевый слой. Светопроводящая часть колбы выполнена из матового стекла, что придает свету мягкость и сглаживает контрастные тени от предметов. Такие лампы маркируются индексами обозначающими тип светового потока: ЗК (концентрированное светораспределение), ЗС (среднее светораспределение) или ЗШ (широкое светораспределение).

    К этой же группе относят неодимовые лампы, отличие которых состоит в добавлении окиси неодима в формулу состава, из которого выдувается стеклянная колба. Благодаря этому часть желтого спектра поглощается, и цветовая температура сдвигается в область более яркого белого излучения. Это позволяет использовать неодимовые лампы в интерьерном освещении для большей яркости и сохранения оттенков в интерьере. В индекс неодимовых ламп добавлена буква «Н».

    Сфера применения зеркальных ламп огромна: витрины магазинов, сценическое освещение, оранжереи, теплицы, животноводческие хозяйства, освещение медицинских кабинетов и многое другое.
  7. Лампы накаливания галогенные
  8. Характеристики накаливания предусматривают обязательное наличие в газовой колбе бром- или иод-галогеновых соединений. Этот нюанс среды, в которой находится тело накала, позволяет испарившимся молекулам вольфрама реагировать с буферным газом и осаждаться обратно на поверхность спирали после температурного распада неустойчивого соединения.

    За счет этого амортизирующего цикла галогенные лампы могут выдерживать больший нагрев спирали, а значит излучать более белый свет, уже около 3000 К, а также имеют увеличенный срок эксплуатации, среднее значение которого 2000 часов.

Но надо знать и о минусах галогенных ламп. Это низкое электрическое сопротивление лампы в остывшем состоянии и невозможность ее применения в системах «Умный дом», где яркость освещения регулируется .

Перед тем, как определить, какая именно лампа накаливания вам нужна, стоит изучить особенности и маркировку существующих типов. При всем их разнообразии, нужно точно понимать назначение выбираемой лампы и то, как и где она будет использоваться. Несоответствие характеристик лампы задачам, под которые она приобретается, может повлечь не только ненужные расходы, но и привести к аварийным ситуациям, вплоть до повреждения электросети и пожара.

Занимательное видео, характеризирующее работу трех видов лампочек