Как устроен газопровод под водой. Как прокладываются подводные газопроводы Технические термины и определения

Мировое сообщество признает бесспорный факт способности РФ проложить трубопровод по морскому дну и успешно начать его эксплуатацию. Успех был достигнут в реализации проекта «Северный поток» в акватории Балтийского моря.

На очереди - «Южный поток», но акватория - уже Черного моря. Способна ли РФ построить газопровод с эксплуатационными показателями, которые обеспечат его безаварийную эксплуатацию в течение всего срока? Да! Способна. Специалисты РФ обеспечат функционирование трубы даже до того момента, когда природные запасы газа будут исчерпаны. В то время труба будет пустой, так как газа не будет.

Так при чем здесь «русская рулетка»? Есть ряд обстоятельств, игнорировать которые никто не имеет права.

1. Гидрология Черного моря

а) глубина большей части дна моря - 2000 метров.

Погружаясь на глубину 10 метров, имеем рост давления на 1 атмосферу. Атомная подводная лодка, на которой автор имел честь служить, погружалась на глубину 415 метров. Толщина брони, из которой была изготовлена «Мурена», составляла 5 см. Нитей между переборками мы не натягивали, это технологически невозможно сделать, но визуально фиксировали «проседания» ракетных шахт, а «стон» прочного корпуса лодки воспринимался как продолжение собственного обнаженного нерва.

б) объем воды в Черном море 550 000 км куб.

в) сероводород Н2S присутствует в 87% объема всего моря и в свободном состоянии заполнит 20 000 км куб.

г) плечо прокачки газа от станции на берегу кавказского побережья РФ до станции на болгарском берегу составляет не одну сотню километров. Нет технической возможности дополнительного «разгона» потока газа на промежуточной станции. Единственный вариант - максимально сильно поднять давление на территории РФ и отпомповывать из трубы на другом берегу. (Очень важное обстоятельство!)

2. Непреодолимые обстоятельства, на которые не может иметь влияния никто

Вследствие шторма потерпело крушение судно. Плавсредство тонет и попадает на газопровод. 15000 тонн металла получают огромную энергию, пока не преодолеют 2000 метров от поверхности до дна. Трубопровод будет перерублен мгновенно. Обычная практика в акватории Черного моря состоит в том, чтобы транспортировать металлолом на плоскодонных (!) Речных судах, в которых укреплен корпус и которым присвоен класс «река-море». Можно еще что-то приварить к корпусу речной самоходной баржи и повысить ее класс до уровня «река-океан», но от немедленной катастрофы это не спасет… Далее будет так: под бешеным давлением газ образует пузырь, который пойдет на поверхность. Инерционные силы в газопроводе (смотри п.г. - выше), время, которое требуется для срабатывания аварийной системы и перекрытия потока, позволят преодолеть невероятно большие объемы насыщенной сероводородом воды и прорвать 100–400 метровый слой обогащенной кислородом воды. Во время непогоды, когда произошла авария судна, молнии обязательно присутствуют. Смесь газа, сероводорода и атмосферного кислорода не долго будет ждать искру, которая спровоцирует взрыв.

3. Давайте помолимся за души невинно убитых в г. Беслан и в Норвегии. Дети погибли от рук террористов, молодые люди погибли на крошечном острове от руки сумасшедшего.

Трубопровод на дне моря можно увидеть на приборе так четко и ясно, как собственные тапочки на вытянутых ногах. Кумулятивный снаряд прожигает броню танка, как газетная бумага, а броня танка намного толще стенки трубы. Газопровод по дну Черного моря - это граната, которую взорвать могут непреодолимые обстоятельства и любой сумасшедший, фанатик или единоличный террорист. А организация плохих парней такой теракт сделает даже ночью.

Последствия взрыва сероводорода могут привести в самом страшном варианте к потере орбиты планетой Земля или сдвинут тектонические плиты - тогда потеряем 60% фауны и флоры. Пройдет определенный период времени и жизнь вернется и расцветет - главное, чтобы не возродился «Газпром».

За 20 лет независимости Украины у нас не было руководства, которое не «химичило» бы с газотранспортной системой. Средства, колоссальные средства затмевают разум всем и везде. Непрозрачность взаимоотношений, теневые схемы - вот что ведет к подобным проектам и может поставить на цивилизации крест. Такие отношения между Украиной и РФ - недопустимы.

Нельзя обвинять РФ во всех грехах, делаю Украину белой и пушистой. Ответственность должны нести обе стороны. И арбитром в этой ситуации должно быть мировое сообщество. ГТС Украины должна эксплуатироваться в режиме открытости и международного аудита и постоянного мониторинга. И первый шаг к этому - мировое сообщество должно поставить точку в возможных фальсификациях на выборах в ВР Украины в 2012 году. У нас чиновники действующего правительства могут сегодня покупать плавучие буровые платформы дороже, чем их продает производитель. Такое наше руководство не оставляет выбора РФ, как только начать строить «Южный поток». Такое руководство не может честно эксплуатировать ГТС Украины. Оно должно уйти. Мировое сообщество должно осознать масштаб угрозы украинской коррупции и твердолобость «Газпрома», что вместе способно создать условия для взрыва, который может легко превзойти одновременно сдетонировавший ядерный потенциал США.

ЧАСТЬ 1. НОРМЫ ПРОЕКТИРОВАНИЯ

1. Общие положения

1.1. Морские магистральные газопроводы должны обладать повышенной надежностью при строительстве и эксплуатации с учетом особых условий (большие глубины моря, повышенная протяженность без промежуточных компрессорных станций, морские штормы, подводные течения, сейсмичность и другие факторы).

Проектные решения по прокладке морских газопроводов должны быть согласованы с Государственным Комитетом РФ по охране окружающей среды, Госгортехнадзором России и местными органами надзора.

1.2. По трассе морского газопровода устанавливаются охранные зоны, которые включают участки магистрального газопровода от компрессорных станций до уреза воды и далее по дну моря в пределах континентального шельфа, на расстояние не менее 500 м.

1.3. Диаметр морского газопровода и величина рабочего давления определяются из условий поставки природного газа Потребителю на основании гидравлического анализа.

1.4. Срок службы морского газопровода устанавливается Заказчиком проекта. На весь срок службы газопроводной системы должна быть рассчитана надежность и безопасность сооружения и такие воздействия, как коррозия металла и усталость применяемых материалов.

1.5. Границами морского участка магистрального газопровода является запорная арматура, установленная на противоположных берегах моря. Запорная арматура должна быть оснащена автоматикой аварийного закрытия.

1.6. На концах каждой нитки морского газопровода должны быть предусмотрены узлы пуска и приема очистных устройств и снарядов-дефектоскопов. Расположение и конструкция этих узлов определяются проектом.

1.7. Морской газопровод должен быть свободен от препятствий потоку транспортируемого продукта. В случае применения кривых искусственного гнутья или фитинговых изделий, их радиус должен быть достаточным для прохождения очистных и контрольных устройств, но не менее 10 диаметров трубопровода.

1.8. Расстояние между параллельными нитками морских газопроводов следует принимать из условий обеспечения надежности в процессе их эксплуатации, сохранности действующей нитки при строительстве новой нитки газопровода и безопасности при производстве строительно-монтажных работ.

1.9. Защита морского трубопровода от коррозии осуществляется комплексно: защитным наружным и внутренним покрытием и средствами катодной защиты.

Противокоррозионная защита должна способствовать безаварийной работе морского трубопровода на протяжении всего срока его эксплуатации.

1.10. Морской трубопровод должен иметь изолирующее соединение (фланец или муфту) с системой защиты от коррозии сухопутных участков магистрального газопровода.

1.11. Выбор трассы морского трубопровода должен производиться по критериям оптимальности и основываться на следующих данных:

· грунтовые условия морского дна;

· батиметрия морского дна;

· морфология морского дна;

· исходные сведения об окружающей среде;

· сейсмическая активность;

· районы рыболовства;

· судовые фарватеры и места заякоривания судов;

· районы сброса грунта;

· акватории с повышенным экологическим риском;

· характер и протяженность тектонических разломов. В качестве основных критериев оптимальности следует принимать техническую и экологическую безопасность сооружения.

1.12. В проекте необходимо представить данные о физическом и химическом составе транспортируемого продукта, его плотности, а также указать расчетное внутреннее давление и расчетную температуру вдоль всей трассы трубопровода. Приводятся также сведения о предельных значениях температуры и давления в трубопроводе.

Следует указать допустимые концентрации коррозионных компонентов в транспортируемом газе: сернистых соединений, воды, хлоридов, кислорода, двуокиси углерода и сероводорода.

1.13. Разработка проекта производится на основе анализа следующих основных факторов:

· направление и скорость ветра;

· высота, период и направление морских волн;

· скорость и направление морских течений;

· уровень астрономического прилива и отлива;

· штормовой нагон воды;

· свойства морской воды;

· температура воздуха и воды;

· рост морского обрастания на трубопроводе;

· сейсмическая обстановка;

· распространение промысловых и охраняемых видов морской флоры и фауны.

1.14. В проекте должен быть представлен анализ допустимых пролетов и устойчивости трубопровода на дне моря, а также расчет патрубков - ограничителей лавинного смятия трубопровода в процессе его укладки на больших глубинах моря.

1.15. Газопровод должен заглубляться в дно на участках его выхода на берег. Проектная отметка верха заглубленного в грунт трубопровода (по утяжеляющему покрытию) должна назначаться ниже прогнозируемой глубины размыва дна акватории или берегового участка на весь период эксплуатации морского трубопровода.

1.16. На глубоководных участках газопровод можно прокладывать по поверхности дна моря при условии обеспечения его проектного положения в процессе всего периода эксплуатации. При этом необходимо обоснование исключения всплытия или подвижек трубопровода под воздействием внешних нагрузок и его повреждения рыболовецкими тралами или якорями судов.

1.17. При проектировании морской трубопроводной системы должны быть учтены все виды воздействия на трубопровод, которые могут потребовать дополнительной защиты:

· возникновение и распространение растрескивания или смятия труб и сварных швов в процессе монтажа или эксплуатации;

· потеря устойчивости положения трубопровода на дне моря;

· потеря механических и служебных свойств трубной стали в процессе эксплуатации;

· недопустимо большие пролеты трубопровода на дне;

· эрозия морского дна;

· удары по трубопроводу якорями судов или рыболовецких тралов;

· землетрясения;

· нарушение технологического режима транспортировки газа. Выбор способа защиты принимается в проекте в зависимости от местных условий окружающей среды и степени потенциальной угрозы морскому газопроводу.

1.18. В проектной документации должны быть отражены следующие данные: размеры труб, вид транспортируемого продукта, срок службы трубопроводной системы, глубина воды по трассе газопровода, тип и класс стали, необходимость термообработки после сварки кольцевых монтажных сварных стыков, система противокоррозионной защиты, планы будущего развития регионов вдоль трассы трубопроводной системы, объёмы работ и графики строительства.

На чертежах необходимо указать местоположение трубопроводной системы относительно близлежащих населенных пунктов и гаваней, курсов следования кораблей, а также других видов сооружений, способных оказать влияние на надежность трубопроводной системы.

В проекте учитываются все виды нагрузок, возникающих при изготовлении, укладке и эксплуатации трубопроводной системы, которые могут повлиять на выбор проектного решения. Выполняются все необходимые расчеты трубопроводной системы на эти нагрузки, включая: анализ прочности трубопроводной системы при монтаже и эксплуатации, анализ устойчивости положения трубопровода на дне моря, анализ усталостного и хрупкого разрушения трубопровода с учетом сварных кольцевых швов, анализ устойчивости стенки трубы на смятие и избыточных деформаций, анализ вибраций, если это необходимо, анализ стабильности основания морского дна.

1.19. В составе проекта морского газопровода необходимо разработать следующую документацию:

· технические условия на материал труб;

· технические условия на сварку труб и неразрушающий контроль с указанием норм допустимых дефектов сварных швов;

· технические условия на усиленные вставки для ограничения лавинного смятия трубопровода;

· технические условия на наружное и внутреннее антикоррозионное покрытие труб;

· технические условия на утяжеляющее покрытие труб;

· технические условия на материал для изготовления анодов;

· технические условия на укладку морского участка трубопровода;

· технические условия на строительство трубопровода при пересечении береговой линии и берегозащитные мероприятия;

· технические условия на испытания и ввод в эксплуатацию морского трубопровода;

· технические условия на обслуживание и ремонт морского трубопровода;

· общую спецификацию материалов;

· описание строительных плавсредств и другого используемого оборудования.

При разработке "Технических условий" и "Спецификаций" должны быть использованы требования настоящих норм и рекомендации общепризнанных международных стандартов (1993), DNV (1996) и (1993), а также результаты научных исследований по этой проблеме.

1.20. Проектно-конструкторская документация, включая протоколы испытаний, материалы изысканий и исходной диагностики должны быть сохранены в течение всего срока службы морской трубопроводной системы. Необходимо сохранять также отчеты о работе трубопроводной системы, об инспекционном контроле в процессе её эксплуатации, а также данные о техническом обслуживании морской трубопроводной системы.

1.21. Экспертиза проектной документации должна выполняться независимыми организациями, которым проектная организация представляет всю необходимую документацию.

2. Расчетные критерии для трубопроводов.

2.1. Критерии прочности в данных нормах основаны на допускаемых напряжениях с учетом остаточных сварочных напряжений. Можно использовать также методы расчета по предельному состоянию, при условии, что эти методы обеспечат надежность морской трубопроводной системы, требуемую настоящими нормами.

2.2. Расчеты морского газопровода необходимо производить на статические и динамические нагрузки и воздействия с учетом работы сварных кольцевых швов в соответствии с требованиями строительной механики, прочности материалов и механики грунтов, а также требованиями настоящих норм.

2.3. Точность методов расчета должна быть обоснована практической и экономической целесообразностью. Результаты аналитических и численных решений, при необходимости, должны быть подтверждены лабораторными или натурными испытаниями.

2.4. Расчет морского газопровода производится на наиболее неблагоприятное сочетание реально ожидаемых нагрузок.

2.5. Для морского газопровода расчеты следует выполнять отдельно на нагрузки и воздействия, возникающие при его строительстве, включая гидростатические испытания, и на нагрузки и воздействия, возникающие при эксплуатации морской трубопроводной системы.

2.6. При расчетах на прочность и деформативность основные физические характеристики стали следует принимать по "Техническим условиям на материал труб".

3. Нагрузки и воздействия.

3.1. В данных нормах приняты следующие сочетания нагрузок при расчетах морского газопровода:

· постоянно действующие нагрузки;

· постоянно действующие нагрузки совместно с нагрузками окружающей среды;

· постоянно действующие нагрузки в комбинации со случайными нагрузками.

3.2. К постоянно действующим нагрузкам на морской трубопровод в процессе его строительства и последующей эксплуатации относятся:

· вес конструкции трубопровода, включая утяжеляющее покрытие, морское обрастание и прочее;

· наружное гидростатическое давление морской воды;

· выталкивающая сила водной среды;

· внутреннее давление транспортируемого продукта;

· температурные воздействия;

· давление грунта засыпки.

3.3. К воздействиям окружающей среды на морской трубопровод относятся:

· нагрузки, вызванные подводными течениями;

· нагрузки, вызванные морским волнением.

При расчетах морского трубопровода на период строительства следует учитывать также нагрузки от строительных механизмов и нагрузки, возникающие в процессе гидростатических испытаний.

3.4. К случайным нагрузкам относятся: сейсмическая активность, деформация грунтов морского дна и оползневые процессы.

3.5. При определении нагрузок и воздействий на морской трубопровод следует основываться на данных инженерных изысканий, проводимых в зоне прохождения трассы трубопровода, включая инженерно-геологические, метеорологические, сейсмические и другие виды изысканий.

Нагрузки и воздействия должны подбираться с учетом прогнозного изменения условий окружающей среды и технологического режима транспортировки газа.

4. Допустимые расчетные напряжения и деформации.

4.1. Допустимые напряжения при расчетах на прочность и устойчивость морских трубопроводов устанавливаются в зависимости от предела текучести металла применяемых труб с использованием расчетного коэффициента "К", значения которого приведены в

s доп £ K × s Т ()

Значения расчетных коэффициентов надежности "К" для морских газопроводов.

Кольцевые растягивающие напряжения при постоянно действующих нагрузках

Суммарные напряжения при постоянных нагрузках в комбинации с нагрузками окружающей среды или случайными нагрузками

Суммарные напряжения в процессе строительства или проведения гидростатических испытаний

Морской газопровод

Береговые и прибрежные участки газопровода в охранной зоне

Морской газопровод, включая береговые и прибрежные участки в охранной зоне

0,72

0,60

0,80

0,96

4.2. Максимальные суммарные напряжения, вызванные внутренним и наружным давлением, продольными усилиями с учетом овальности труб, не должны превышать допускаемые значения:

4.3. Трубопроводы следует проверять на прочность и местную устойчивость сечения трубы от наружного гидростатического давления. В этом случае внутреннее давление в трубопроводе принимают равным 0,1 МПа.

4.4. Значение овальности труб устанавливается по формуле:

()

Допустимая суммарная овальность, включая начальную овальность труб (заводские допуски), не должна превышать 1,0 % (0,01).

4.5. Остаточная деформация в морском трубопроводе должна быть не более 0,2 % (0,002).

4.6. На участках возможных просадок морского трубопровода необходимо производить расчет прогнозируемого искривления оси трубопровода от собственного веса с учетом внешних нагрузок.

4.7. В проекте следует дать анализ всем возможным колебаниям напряжений в трубопроводе по интенсивности и частоте, способных вызвать усталостные разрушения в процессе строительства или при дальнейшей эксплуатации морской трубопроводной системы (гидродинамические воздействия на трубопровод, колебания рабочего давления и температуры и другие). Особое внимание следует уделять участкам трубопроводной системы, предрасположенным к концентрации напряжений.

4.8. Для расчета усталостных явлений можно использовать методики, основанные на механике разрушений при испытании труб на малоцикловую усталость.

5. Расчет толщины стенки трубопровода.

5.1. Для морского газопровода толщину стенки труб следует рассчитывать для двух ситуаций, определяемых действующими нагрузками:

На внутреннее давление в трубопроводе для мелководных, береговых и прибрежных участков газопровода, расположенных в охранной зоне;

На смятие газопровода под воздействием наружного давления, растяжения и изгиба для глубоководных участков по трассе трубопровода.

5.2. Расчет минимальной толщины стенки морского газопровода под воздействием внутреннего давления следует производить по формуле:

()

5.7. При определении толщины стенки труб в условиях совместного воздействия изгиба и сжатия в расчетах следует принимать значение предела текучести на сжатие, равное 0,9 от предела текучести материала труб.

5.8. При использовании методов укладки с полным контролем деформации изгиба трубопровода допустимая деформация изгиба при укладке трубопровода на глубинах моря более 1000 м не должна превышать 0,15 % (0,0015). При этом критическое значение деформации изгиба трубопровода на таких глубинах составит 0,4 % (0,004).

6. Устойчивость стенки трубопровода под воздействием внешнего гидростатического давления и изгибающего момента.

6.1. Для диапазона соотношений 15D/t

()

()

При этом, начальная овальность трубы не должна превышать 0,5 % (0,005).

6.2. Наружное гидростатическое давление на трубу при фактической глубине воды определяется по формуле:

()

6.3. Следует также учитывать, что при давлении, превышающем критическое значение, местное поперечное смятие трубы может развиться вдоль продольной оси трубопровода.

Наружное гидростатическое давление, при котором может произойти распространение возникшего ранее смятия, устанавливается по формуле:

()

6.4. Для исключения развития смятия по длине трубопровода, на трубопроводе необходимо предусмотреть установку ограничителей смятия в виде колец жесткости или патрубков с увеличенной толщиной стенки.

Длина ограничителей должна быть не менее четырех диаметров трубы.

7. Устойчивость трубопровода на дне моря при воздействии гидродинамических нагрузок.

7.1. Расчеты трубопровода должны проводиться для проверки устойчивости положения трубопровода на дне моря в процессе его строительства и эксплуатации.

Если трубопровод заглублен в непрочном грунте, а его плотность меньше плотности окружающего грунта, следует установить, что сопротивление грунта срезающим усилиям достаточно для предотвращения всплытия трубопровода на поверхность.

7.2. Относительная плотность трубопровода с утяжеляющим покрытием должна быть больше плотности морской воды с учетом наличия в ней взвешенных частиц грунта и растворенных солей.

7.3. Величина отрицательной плавучести трубопровода из условия устойчивости его положения на дне моря определяется по формуле:

7.4. При определении устойчивости морских трубопроводов на дне моря под воздействием гидродинамических нагрузок расчетные характеристики ветра, уровня воды и элементов волн следует принимать в соответствии с требованиями
*.

Допускается оценка гидродинамической устойчивости трубопровода с применением методов анализа, учитывающих перемещение трубопровода в процессе самозаглубления в грунт.

7.5. Максимальную горизонтальную (Р х + Р и) и соответствующую ей вертикальную Рz проекции линейной нагрузки от волн и морских течений, действующих на трубопровод, необходимо определять по формулам *.

7.6. Расчёты значений скоростей придонных течений и волновых нагрузок следует производить для двух случаев:

· повторяемостью один раз в 100 лет при расчетах на период эксплуатации морской трубопроводной системы;

· повторяемостью один раз в год при расчётах на период строительства морской трубопроводной системы.

7.7. Значения коэффициентов трения необходимо принимать по данным инженерных изысканий для соответствующих фунтов по трассе морского трубопровода.

8. Материалы и изделия.

8.1. Материалы и изделия, применяемые в морской трубопроводной системе, должны отвечать требованиям утвержденных стандартов, технических условий и других нормативных документов.

Не допускается применять материалы и изделия, на которые отсутствуют сертификаты, технические свидетельства, паспорта и другие документы, подтверждающие их качество.

8.2. Требования к материалу труб и соединительным деталям, а также к запорной и регулирующей арматуре должны отвечать требованиям "Технических условий" на эти изделия, в которые включают: технологию производства изделия, химический состав, термическую обработку, механические свойства, контроль качества, сопроводительную документацию и маркировку.

При необходимости, в "Технических условиях" приводятся требования к проведению специальных испытаний труб и их сварных соединений, в том числе и в сероводородной среде, с целью получения их положительных результатов до начала производства основной партии труб, предназначенных для строительства морского газопровода.

8.3. В "Технических условиях на сварку труб и неразрушающий контроль" следует указать требования к дефектам сварных швов, при которых разрешено производить ремонт кольцевых сварных соединений трубопровода. Необходимо также привести данные по термообработке сварных соединений или сопутствующем их нагреве после сварки при монтаже трубопровода.

8.4. Для сварочных электродов и других изделий должны быть представлены спецификации на их изготовление.

8.5. Допуски на овальность труб при их изготовлении (заводской допуск) в любом сечении трубы не должны превышать + 0,5 %.

8.6. Соединительные детали, предназначенные для морского трубопровода, должны испытываться в заводских условиях гидравлическим давлением в 1,5 раза большим рабочего давления.

8.7. Для автоматической сварки стыков труб могут применяться следующие сварочные материалы:

· керамические или плавленые флюсы специальных составов;

· сварочные проволоки специального химического состава для сварки под флюсом или в защитных газах;

· аргон газообразный;

· специальные смеси аргона с углекислым газом;

· самозащитная порошковая проволока.

Сочетания конкретных марок флюсов и проволок, марки самозащитных порошковых проволок и проволок для сварки в защитных газах, должны выбираться с учетом их стойкости в сероводородной среде и быть аттестованы в соответствии с требованиями "Технических условий на сварку труб и неразрушающий контроль".

8.8. Для ручной дуговой сварки и ремонта морского трубопровода должны использоваться электроды с основным или целлюлозным видом покрытия. Конкретные марки сварочных электродов должны выбираться с учетом их стойкости в сероводородной среде и быть аттестованы в соответствии с требованиями "Технических условий на сварку труб и неразрушающий контроль".

8.9. Утяжеляющее покрытие труб должно назначаться из армированного стальной сеткой бетона, наносимого на отдельные изолированные трубы в заводских условиях в соответствии с требованиями "Технических условий на утяжеляющее покрытие труб".

Класс и марка бетона, его плотность, толщина бетонного покрытия, масса обетонированной трубы определяются проектом.

Стальная арматура не должна образовывать электрического контакта с трубой или анодами, а также не должна выходить на наружную поверхность покрытия.

Между утяжеляющим покрытием и трубой должно быть обеспечено достаточное сцепление, исключающее проскальзывание при усилиях, возникающих в процессе укладки и эксплуатации трубопровода.

8.10. Армированное бетонное покрытие на трубах должно обладать химической и механической стойкостью по отношению к воздействиям внешней среды. Тип арматуры выбирается в зависимости от нагрузок на трубопровод и условий эксплуатации. Бетон для утяжеляющего покрытия должен обладать достаточной прочностью и долговечностью.

Каждая обетонированная труба, поступающая на строительную площадку, должна иметь специальную маркировку.

ЧАСТЬ 2. ПРОИЗВОДСТВО И ПРИЕМКА РАБОТ

1. Общие положения

При строительстве морских газопроводов следует применять проверенные опытом технологические процессы, оборудование и строительную технику.

2. Сварка труб и методы контроля сварных соединений.

2.1. Соединения труб при строительстве могут выполняться с использованием двух организационных схем:

· с предварительной сваркой труб в двух- или четырехтрубные секции, которые затем свариваются в непрерывную нитку;

· сваркой отдельных труб в непрерывную нитку.

2.2. Сварочный процесс выполняется в соответствии с "Техническими условиями на сварку труб и неразрушающий контроль" одним из следующих способов:

· автоматическая или полуавтоматическая сварка в среде защитного газа плавящимся или неплавящимся электродом;

· автоматическая или полуавтоматическая сварка самозащитной проволокой с принудительным или свободным формированием металла шва;

· ручная сварка электродами с покрытием основного типа или с целлюлозным покрытием;

· электроконтактная сварка непрерывным оплавлением с послесварочной термической обработкой и радиографическим контролем качества сварных соединений.

При сварке двух- или четырехтрубных секций на вспомогательной линии может применяться также автоматическая сварка под флюсом.

"Технические условия" разрабатываются в составе проекта Подрядчиком и утверждаются Заказчиком на основе проведения исследований по свариваемости опытной партии труб и получения необходимых свойств сварных кольцевых соединений, в том числе по их надежности и работоспособности в сероводородной среде, и проведения соответствующей аттестации технологии сварки.

2.3. Перед началом строительных работ способы сварки, сварочное оборудование и материалы, принятые к использованию, должны быть аттестованы на сварочной базе или на трубоукладочном судне в условиях, приближенных к условиям строительства, в присутствии представителей Заказчика и приняты Заказчиком.

2.4. Все операторы автоматической и полуавтоматической сварки, а также сварщики-ручники должны быть аттестованы в соответствии с требованиями DNV (1996) или с учетом дополнительных требований по стойкости сварных соединений при работе в сероводородной среде.

Аттестация должна проводиться в присутствии представителей Заказчика.

2.5. Сварщики, которые должны выполнять сварку под водой, дополнительно должны пройти соответствующее обучение, а затем специальную аттестацию в камере под давлением с имитацией натурных условий работы на дне моря.

2.6. Сварные кольцевые соединения труб должны соответствовать требованиям "Технических условиях на сварку труб и неразрушающий контроль".

2.7. Кольцевые сварные соединения подвергаются 100 % радиографическому контролю с дублированием 20 % стыков автоматизированным ультразвуковым контролем с записью результатов контроля на ленту.

При согласовании с Заказчиком допускается применение 100 % автоматизированного ультразвукового контроля с записью на ленте 25 % дублирующего радиографического контроля.

Приемка сварных соединений производится в соответствии с требованиями "Технических условий на сварку труб и неразрушающий контроль", которые должны включать нормы допустимых дефектов в сварных швах.

2.8. Кольцевые сварные швы считаются принятыми только после их одобрения представителем Заказчика на основе просмотра радиографических снимков и записей результатов ультразвукового контроля. Документация с записями результатов процесса сварки и контроля сварных стыков труб сохраняется эксплуатирующей трубопровод организацией на протяжении всего срока службы морского трубопровода.

2.9. При соответствующем обосновании разрешается производить соединение плетей трубопровода или ремонтные работы на дне моря, с применением стыковочных устройств и гипербарической сварки. Процесс подводной сварки должен быть классифицирован соответствующими испытаниями.

3. Защита от коррозии

3.1. Морской газопровод должен быть изолирован по всей наружной и внутренней поверхности антикоррозионным покрытием. Изоляция труб должна быть произведена в заводских или базовых условиях.

3.2. Изоляционное покрытие должно соответствовать требованиям "Технических условий на наружное и внутреннее антикоррозионное покрытие труб" на весь период службы трубопровода по следующим показателям: прочность при разрыве, относительное удлинение при рабочей температуре, прочность при ударе, адгезия к стали, предельная площадь отслаивания в морской воде, грибостойкость, сопротивление вдавливанию.

3.3. Изоляция должна выдерживать испытания на пробой при напряжении не менее
5 кВ на миллиметр толщины.

3.4. Изоляция сварных стыков, крановых узлов и фасонной арматуры должна по своим характеристикам соответствовать требованиям, предъявляемым к изоляции труб.

Изоляция мест подключения устройств электрохимической защиты и контрольно-измерительной аппаратуры, а также восстановленная изоляция на поврежденных участках должны обеспечивать надежную адгезию и защиту от коррозии металла труб.

3.5. При выполнении изоляционных работ должен производиться:

· контроль качества применяемых материалов;

· пооперационный контроль качества этапов изоляционных работ.

3.6. В период транспортировки, погрузочно-разгрузочных работ и складирования труб должны быть предусмотрены специальные меры, исключающие механические повреждения изоляционного покрытия.

3.7. Изоляционное покрытие на законченных строительством участках трубопровода подлежит контролю методом катодной поляризации.

3.8. Электрохимическая защита системы морских трубопроводов производится с помощью протекторов. Все оборудование электрохимической защиты должно быть рассчитано на полный срок эксплуатации системы морских газопроводов.

3.9. Протекторы должны быть изготовлены из материалов (сплавов на основе алюминия или цинка), прошедших натурные испытания и отвечающих требованиям "Технических условий на материал для изготовления анодов", разрабатываемых в составе проекта.

3.10. Протекторам необходимо иметь два соединительных кабеля с трубой. Протекторы браслетного типа устанавливают на трубопроводе таким образом, чтобы избежать их механического повреждения при транспортировке и укладке трубопровода.

Дренажные кабели защитных устройств следует присоединять к трубопроводу с помощью ручной аргонодуговой или конденсаторной сварки.

При согласовании с Заказчиком можно использовать ручную электродуговую сварку электродами.

3.11. На морском трубопроводе должны быть обеспечены потенциалы непрерывно по всей его поверхности в течение всего периода эксплуатации. Для морской воды минимальные и максимальные значения защитных потенциалов приведены в . Указанные потенциалы рассчитаны для морской воды с соленостью от 32 до 28 %о при температуре от 5 до 25° С.

Минимальные и максимальные защитные потенциалы

3.12. Электрохимическая защита должна быть введена в действие не позднее 10 суток с момента окончания работ по укладке трубопровода.

4. Выходы трубопровода на берег

4.1. Для выхода трубопровода на берег могут быть использованы следующие способы строительства:

· открытые земляные работы с устройством шпунтовых ограждений на береговой полосе;

· направленное бурение, при котором трубопровод протаскивают через предварительно пробуренную скважину на прибрежном участке;

· тоннельный способ.

4.2. При выборе способа строительства трубопровода на участках выхода на берег следует учитывать рельеф береговых участков и другие местные условия в районе строительства, а также оснащенность строительной организации техническими средствами, используемыми для производства работ.

4.3. Выходы трубопровода на берег с применением наклонно-направленного бурения или тоннеля должны быть обоснованы в проекте экономической и экологической целесообразностью их применения.

4.4. При строительстве трубопровода на прибрежном участке с применением подводных земляных работ могут быть применены следующие технологические схемы:

· плеть трубопровода требуемой длины изготавливается на трубоукладочном судне и протягивается к берегу по дну ранее подготовленной подводной траншеи с применением тяговой лебедки, установленной на берегу;

· плеть трубопровода изготавливается на береговой площадке, проходит гидростатические испытания и затем вытягивается в море по дну подводной траншеи с помощью тяговой лебедки, установленной на трубоукладочном судне.

4.5. Строительство морского трубопровода на прибрежных участках производится в соответствии с требованиями "Технических условий на строительство трубопровода при пересечении береговой линии", разрабатываемых в составе проекта.

5. Подводные земляные работы

5.1. Технологические процессы разработки траншеи, укладки трубопровода в траншею и его засыпки грунтом должны быть максимально совмещены во времени с учетом заносимости траншеи и переформирования ее поперечного профиля. При засыпке подводных траншей должны быть разработаны технологические мероприятия, снижающие до минимума потери грунта за границами траншеи.

Технология разработки подводных траншей должна быть согласована с природоохранными органами.

5.2. Параметры подводной траншеи должны быть по возможности минимальными, для чего следует обеспечивать повышенную точность их разработки. Требования повышенной точности распространяются также и на засыпку трубопровода.

В зоне трансформации морских волн следует назначать более пологие откосы с учетом переформирования поперечного сечения траншеи.

5.3. Параметры подводной траншеи на участках, глубины которых с учетом
сгонно-нагонных и приливно-отливных колебаний уровня воды, менее осадки землеройной техники, следует принимать в соответствии снормами эксплуатации морских судов и обеспечения безопасных глубин в границах рабочих перемещений землеройной техники и обслуживающих её судов.

5.4. Объемы временных отвалов грунта должны быть сведены к минимуму. Местоположение складирования разрабатываемого грунта должно быть выбрано с учетом минимального загрязнения окружающей среды и согласовано с организациями, контролирующими экологическое состояние района строительства.

5.5. Если проектом разрешается использовать для засыпки траншеи местный грунт, то при строительстве многониточной трубопроводной системы допускается траншею с уложенным трубопроводом засыпать грунтом, отрываемым из траншеи параллельной нитки.

6. Укладка с трубоукладочного судна

6.1. Выбор метода укладки морского трубопровода производится на основе его технологической выполнимости, экономической эффективности и безопасности для окружающей среды. Для больших глубин моря рекомендуются методы укладки трубопровода по S -образной и J -образной кривой с использованием трубоукладочного судна.

6.2. Укладка морского трубопровода производится в соответствии с требованиями "Технических условий на строительство морского участка трубопровода", разрабатываемых в составе проекта.

6.3. Трубоукладочное судно до начала производства строительных работ должно пройти испытания, включая испытания сварочного оборудования и неразрушающих методов контроля, оборудования для изоляции и ремонта сварных стыков труб, натяжных устройств, лебедок, приборов контроля и систем управления, обеспечивающих перемещение судна по трассе и укладку трубопровода на проектные отметки.

6.4. На мелководных участках трассы трубоукладочное судно должно обеспечивать укладку трубопровода в подводную траншею в пределах допусков, определяемых проектом. Для контроля положения судна относительно траншеи следует использовать сканирующие эхолоты и гидролокаторы кругового обзора.

6.5. Перед началом укладки трубопровода в траншею следует выполнить подчистку подводной траншеи и произвести контрольные промеры с построением продольного профиля траншеи. При протаскивании трубопровода по дну моря необходимо выполнить расчеты тяговых усилий и напряженного состояния трубопровода.

6.6. Тяговые средства выбирают по максимальному расчетному тяговому усилию, которое в свою очередь зависит от длины протаскиваемого трубопровода, коэффициента трения и веса трубопровода в воде (отрицательной плавучести).

Значения коэффициентов трения скольжения должны назначаться по данным инженерных изысканий с учетом возможности погружения трубопровода в грунт, несущей способности грунта и отрицательной плавучести трубопровода.

6.7. Для уменьшения тяговых усилий при укладке, на трубопровод могут быть установлены понтоны, уменьшающие его отрицательную плавучесть. Понтоны должны быть проверены на прочность от воздействия гидростатического давления и иметь устройства для механической отстропки.

6.8. Перед укладкой трубопровода на глубоководном участке необходимо выполнить расчеты напряженно-деформированного состояния трубопровода для основных технологических процессов:

· начало укладки;

· непрерывная укладка трубопровода с изгибом по S -образной или J-образной кривой;

· укладка трубопровода на дно во время шторма и его подъем;

· окончание укладочных работ.

6.9. Укладку трубопровода следует выполнять строго в соответствии с проектом организации строительства и проектом производства работ.

6.10. В процессе укладки трубопровода должны непрерывно контролироваться кривизна трубопровода и напряжения, возникающие в трубопроводе. Значения этих параметров должны определяться на основе расчетов нагрузок и деформаций до начала укладки трубопровода.

7. Берегозащитные мероприятия

7.1. Крепление береговых склонов после укладки трубопровода производится выше максимального расчетного уровня воды и должно обеспечивать защиту берегового склона от разрушения под воздействием волновых нагрузок, дождевых и талых вод.

7.2. При производстве берегозащитных работ следует применять проверенные опытом экологически чистые конструкции, технологические процессы и работы выполнять в соответствии с требованиями "Технических условий на строительство трубопровода при пересечении береговой линии и берегозащитные мероприятия".

8. Контроль за качеством строительства

8.1. Контроль за качеством строительства должен осуществляться независимыми техническими подразделениями.

8.2. Для достижения необходимого качества строительных работ необходимо обеспечить контроль качества выполнения всех технологических операций по изготовлению и монтажу трубопровода:

· процесс доставки труб от завода-изготовителя до монтажной площадки должен гарантировать отсутствие механических повреждений на трубах;

· контроль качества обетонированных труб должен осуществляться в соответствии с техническими требованиями на поставку обетонированных труб;

· поступающие трубы, сварочные материалы (электроды, флюс, проволока) должны иметь Сертификаты, соответствующие требованиям технических условий на их поставку;

· при сварке труб необходимо осуществлять систематический пооперационный контроль за процессом сварки, визуальный осмотр и обмер сварных соединений и проверку всех кольцевых сварных швов неразрушающими методами контроля;

· изоляционные материалы, предназначенные для монтажных стыков труб не должны иметь механических повреждений. Контроль качества изоляционных покрытий должен предусматривать проверку сплошности покрытия с применением дефектоскопов.

8.3. Морская землеройная техника, трубоукладочные баржи и обслуживающие их суда должны быть оснащены автоматической системой ориентации, предназначенной для постоянного контроля планового положения этих технических средств в процессе их работы.

8.4. Контроль глубины залегания трубопровода в грунте должен выполняться с помощью методов телеметрии, ультразвуковых профилографов или водолазных обследований после укладки трубопровода в траншею.

Если глубина залегания трубопровода в грунте оказывается недостаточной, предпринимаются исправительные мероприятия.

8.5. В процессе укладки трубопровода необходимо производить контроль основных технологических параметров (положение стингера, натяжение трубопровода, скорость перемещения трубоукладочного судна и др.) на предмет их соответствия проектным данным.

8.6. Для контроля за состоянием дна и положения трубопровода необходимо периодически с помощью водолазов или подводных аппаратов производить обследование, которое позволит выявить фактическое расположение трубопровода (размывы, провисы), а также возможные деформации дна вдоль трубопровода, вызванные волнением или подводными течениями в этой зоне.

9. Очистка полости и испытание

9.1. Морские трубопроводы подвергаются гидростатическим испытаниям после укладки на морское дно в соответствии с требованиями "Технических условий на испытания и ввод в эксплуатацию морского газопровода", разрабатываемых в составе проекта.

9.2. Предварительное испытание плетей трубопровода на берегу выполняется лишь в том случае, если проектом предусматривается изготовление плетей трубопровода на берегу и их укладка в море способами протаскивания в направлении к трубоукладочному судну.

9.3. До начала гидростатических испытаний необходимо произвести очистку и контроль внутренней полости трубопровода с применением скребков, оснащенных приборами контроля.

9.4. Минимальное давление при гидростатических испытаниях на прочность принимается в 1,25 раза выше расчетного давления. При этом кольцевые напряжения в трубе во время испытания на прочность не должны превышать 0,96 от предела текучести металла труб.

Время выдержки трубопровода под давлением гидростатического испытания должно составлять не менее 8 часов.

Трубопровод считается выдержавшим опрессовку, если в течение последних четырех часов испытаний не было зарегистрировано падений давления.

9.5. Проверку герметичности морского газопровода производят после испытания на прочность и снижения испытательного давления до расчетного значения в течение времени, необходимого для осмотра трубопровода.

9.6. Удаление воды из трубопровода должно производиться с пропуском не менее двух (основного и контрольного) поршней-разделителей под давлением сжатого воздуха или газа.

Результаты удаления воды из газопровода следует считать удовлетворительными, если впереди контрольного поршня-разделителя нет воды и он вышел из газопровода не разрушенным. В противном случае пропуск контрольного поршня-разделителя по трубопроводу необходимо повторить.

9.7. Если в процессе испытаний произойдет разрыв трубопровода или утечка в нем, то дефект должен быть устранен, а морской трубопровод подвергнут повторному испытанию.

9.8. Сдача морского трубопровода в эксплуатацию производится после окончательной очистки и калибровки внутренней полости трубопровода, проведения исходной диагностики и заполнения трубопровода транспортируемым продуктом.

9.9. Результаты производства работ по очистке полости и испытанию трубопровода, а также удалению воды из трубопровода должны быть оформлены актами по утвержденной форме.

10. Охрана окружающей среды

10.1. В морских условиях все виды работ требуют тщательного выбора технологических процессов, технических средств и оборудования, обеспечивающих сохранность экологической среды региона. Разрешается использовать лишь те технологические процессы, которые обеспечат минимальное отрицательное воздействие на окружающую среду и быстрое ее восстановление после завершения строительства системы морских газопроводов.

10.2. При проектировании системы морских газопроводов все мероприятия по охране окружающей среды должны быть включены в надлежащим образом утвержденный план оценки воздействия на окружающую среду (ОВОС).

10.3. При сооружении системы морских газопроводов необходимо строгое выполнение природоохранных требований российских стандартов. На акваториях, имеющих промысловое рыбохозяйственное значение, необходимо предусматривать мероприятия по сохранению и восстановлению биологических и рыбных ресурсов.

Сроки начала и окончания подводных земляных работ с использованием средств гидромеханизации или взрывных работ устанавливаются с учетом рекомендаций органов рыбоохраны, исходя из сроков нереста, нагула, миграции рыбы, а также циклов развития планктона и бентоса в прибрежной зоне.

10.4. В план ОВОС должен входить комплекс конструктивных, строительных и технологических мероприятий, обеспечивающих охрану окружающей среды при строительстве и эксплуатации системы морских газопроводов.

В процессе разработки ОВОС учитываются следующие факторы:

· исходные данные по природным условиям, фоновому экологическому состоянию, биологическим ресурсам акватории, характеризующим естественное состояние региона;

· технологические и конструктивные особенности системы морского газопровода;

· сроки, технические решения и технология выполнения подводно-технических работ, перечень технических средств, используемых для строительства;

· оценка современного и прогнозируемого состояния окружающей среды и экологического риска с указанием источников риска (техногенных воздействий) и вероятных ущербов;

· основные экологические требования, технические и технологические решения по защите окружающей среды при строительстве и эксплуатации морского газопровода и мероприятия по их реализации на объекте;

· мероприятия по обеспечению контроля за техническим состоянием системы морских газопроводов и оперативному устранению аварийных ситуаций;

· мониторинг по состоянию окружающей среды в регионе;

· размеры капитальных вложений в природоохранные, социальные и компенсационные мероприятия;

· оценка эффективности намечаемых природоохранных и социально-экономических мер и компенсаций.

10.5. В процессе эксплуатации системы морских газопроводов необходимо прогнозировать возможность разрыва трубопровода и выброса продукта с оценкой ожидаемого ущерба биоте моря с учетом возможного скопления рыбы (нерест, миграция, период нагула) вблизи створа системы трубопроводов и осуществлять реализацию защитных мер для трубопровода и окружающей среды, предусмотренных для таких случаев проектом.

10.6. Для защиты и сохранения природной среды на акватории моря и в береговой зоне необходима организация постоянного надзора за соблюдением природоохранных мер в процессе всего периода техногенного воздействия, вызванного производством работ при строительстве и эксплуатации системы морских газопроводов.

Приложение 1 . Обязательное.

Обозначения и единицы измерения

D - номинальный диаметр трубопровода, мм;

t - номинальная толщина стенки трубопровода, мм;

s х - суммарные продольные напряжения, Н/мм 2 ;

s y - суммарные кольцевые напряжения, Н/мм 2 ;

t ху - тангенциальные срезающие напряжения, Н/мм 2 ;

К - расчетный коэффициент надежности, принимаемый по ;

s т - минимальное значение предела текучести металла труб, принимаемое по государственным стандартам и техническим условиям на стальные трубы, Н/мм 2 ;

Р - расчетное внутреннее давление в трубопроводе, Н/мм 2 ;

Ро - наружное гидростатическое давление, Н/мм 2 ;

Рx - сила лобового сопротивления, Н/м;

Рz -подъемная сила, Н/м;

Ри - инерционная сила, Н/м;

G - вес трубопровода в воде (отрицательная плавучесть), Н/м;

m - коэффициент надежности, принимаемый равным 1,1;

f - коэффициент трения;

Рс - расчетное наружное гидростатическое давление на трубопровод с учетом овальности трубы, Н/мм 2 ;

Рсг - критическое наружное давление для круглой трубы, Н/мм 2 ;

Ру - наружное давление на трубопровод, вызывающее текучесть материала

труб, Н/мм 2 ;

Рр - наружное гидростатическое давление, при котором произойдет распространение возникшего ранее смятия трубы, Н/мм 2 ;

e о - допустимая деформация изгиба для трубопровода;

e с - критическая деформация изгиба, вызывающая смятие в результате чистого изгиба трубы;

u - коэффициент Пуассона;

Е - модуль Юнга для материала труб, Н/мм 2 ;

Н - критическая глубина воды, м;

g - ускорение силы тяжести, м/с 2 ;

r - плотность морской воды, кг/м 3 ;

U - овальность трубопровода;

R - допустимый радиус кривизны трубопровода при укладке на больших глубинах моря, м.

Приложение 2 .
Рекомендуемое.

Технические термины и определения

Морской газопровод - горизонтальная часть трубопроводной системы, расположенная ниже уровня воды, включающая сам трубопровод, устройства электрохимической защиты на нем и другие устройства, обеспечивающие транспортирование газообразных углеводородов при заданном технологическом режиме.

Охранная зона прибрежных участков газопровода - участки магистрального газопровода от береговых компрессорных станций до уреза воды и далее по дну моря, на расстояние не менее 500 м.

Трубные элементы - детали в конструкции трубопровода, такие как фланцы, тройники, колена, переходники и запорная арматура.

Утяжеляющее покрытие - покрытие, наносимое на трубопровод с целью обеспечения ему отрицательной плавучести и защиты от механических повреждений.

Отрицательная плавучесть трубопровода - сила, направленная вниз, равная весу конструкции трубопровода на воздухе за вычетом веса воды, вытесненной в объеме погруженного в нее трубопровода.

Минимальный предел текучести - минимальный предел текучести, указанный в сертификате или стандарте, по которому поставляются трубы.

При расчетах принимается, что при минимальном пределе текучести суммарное удлинение не превышает 0,2 %.

Расчетное давление - давление, принятое как постоянно действующее максимальное давление, оказываемое транспортируемой средой на трубопровод в процессе его эксплуатации и на которое рассчитана трубопроводная система.

Всплеск давления - случайное давление, вызываемое сбоем установившегося режима потока в трубопроводной системе, не должно превышать расчетное давление более чем на 10 %.

Давление избыточное - разность двух абсолютных давлений, наружного гидростатического и внутреннего.

Испытательное давление - нормированное давление, при котором производится испытание трубопровода перед сдачей его в эксплуатацию.

Испытание на герметичность - гидравлическое испытание давлением, устанавливающее отсутствие утечки транспортируемого продукта.

Испытание на прочность - гидравлическое испытание давлением, устанавливающее конструктивную прочность трубопровода.

Номинальный диаметр трубы - наружный диаметр трубы, указанный в стандарте, по которому поставляются трубы.

Номинальная толщина стенки - толщина стенки трубы, указанная в стандарте, по которому поставляются трубы.

Надежность морского трубопровода - способность трубопровода непрерывно транспортировать продукт в соответствии с установленными проектом параметрами (давление, расход и другие) в течение заданного срока эксплуатации при установленном режиме контроля и технического обслуживания.

Допускаемые напряжения - максимальные суммарные напряжения в трубопроводе (продольные, кольцевые и тангенциальные), допускаемые нормами.

Заглубление трубопровода - положение трубопровода ниже естественного уровня грунта морского дна.

Величина заглубления - разница между уровнями расположения верхней образующей трубопровода и естественным уровнем грунта морского дна.

Длина провисающего участка трубопровода - длина трубопровода, не соприкасающегося с морским дном или с опорными устройствами.

Прокладка морского трубопровода - комплекс технологических процессов по изготовлению, укладке и заглублению морского трубопровода.

Приложение 3 .
Рекомендуемое.

Нормативные документы, использованные при
разработке настоящих норм и правил:

1. СНиП 10-01-94. "Система нормативных документов в строительстве. Основные положения" / Минстрой России. М.: ГП ЦПП, 1994 г.

2. СНиП 2.05.06-85 *. " Магистральные трубопроводы" / Госстрой. М.:ЦИТП Госстроя, 1997 г.

3. *. " Правила производства и приемки работ. Магистральные трубопроводы" /Госстрой. М.: Стройиздат, 1997 г.

4. СНиП 2.06.04-82 *. "Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов)" / Госстрой. М.: ЦИТП Госстроя, 1995 г.

5. "Правила безопасности при разведке и разработке нефтяных и газовых месторождений на континентальном шельфе СССР", М.: "Недра", 1990г.;

6. "Правила техники безопасности при строительстве магистральных трубопроводов". М.: "Недра", 1982 г.;

7. "Правила технической эксплуатации магистральных газопроводов", М.:"Недра", 1989 г.;

8. Стандарт США "Проектирование, строительство, эксплуатация и ремонт морских трубопроводов для углеводородов", АР I - 1111 . Практические рекомендации.1993.

9. Стандарт Норвегии "Det Norske Veritas " (DNV ) "Правила для подводных трубопроводных систем", 1996 г.

10. Британский стандарт S 8010 . "Практическое руководство для проектирования, строительства и укладки трубопроводов. Подводные трубопроводы". Части 1, 2 и 3, 1993 г.

11. АРI 5 L . "Спецификация США для стальных труб". 1995 г.

12. АРI 6 D. "Спецификация США для трубопроводной арматуры (клапаны, заглушки и контрольные задвижки)". 1995 г.

13. Стандарт США АS МЕ В 31.8. "Нормативы по транспортировке газа и распределительным трубопроводным системам", 1996 г.

14. Стандарт США SS -SР - 44 . "Стальные фланцы для трубопроводов", 1990г.

15. Международный стандарт ISO 9000 "Управление качеством и гарантии качества", 1996 г.

При проектировании и сооружении трубопроводов в условиях Арктики специалистам необходимо решить целый ряд уникальных задач, с которыми нефтегазовая промышленность до сих пор не сталкивалась, реализуя проекты в других регионах мира. В их число входят ледовое пропахивание, ледовая эрозия дна, выход льда на берег, устойчивость берегового грунта, таяние льдов. Зачастую возникает необходимость разработки специальных методов и оборудования, предназначенных для работы в удалённых регионах (при отсутствии какой бы то ни было инфраструктуры), с ограниченной продолжительностью строительного сезона, в суровых погодных условиях и сложной ледовой обстановке.

Специфика Арктики

Все перечисленные выше факторы необходимо учитывать при проектировании трубопроводов в дополнение к объёмам перекачиваемых нефти или газа, показателям прочности грунта и устойчивости морского дна. Среди прочих факторов – условия окружающей среды: такие как глубина моря, температура, морская фауна, тип выполняемых работ (например, морская транспортировка углеводородного сырья или промышленная эксплуатация месторождения).

Пропахивание морского дна имеет место при движении ледовых торосов под воздействием ветра или соседнего ледового поля, при этом киль тороса соприкасается с дном. Ледовая эрозия дна образуется во время весеннего таяния, когда вода из разливающихся рек поступает на поверхность морского льда и просачивается в море через полыньи и трещины. Просачивающаяся вода образует водовороты, воздействующие на морское дно и лежащие на дне трубопроводы.

Береговая линия и барьерные острова подвергаются воздействию подвижного льда во время его намерзания или вскрытия. В результате вдоль береговой линии образуются нагоны, максимальная высота которых может быть на уровне ватерлинии или уровня берега, что и приводит к выходу ледяных глыб на берег.

На участке морского трубопровода при соединении с наземным трубопроводом в его конструкции должно быть предусмотрено некоторое расстояние, предохраняющее трубопровод от повреждений при выходе льда на берег. Закладка гравием, пригрузка, восстановление растительного покрова необходимы для предотвращения ускоренной эрозии участка в месте выхода трубы на берег.

При расчёте расстояния выхода трубопровода на берег необходимо также учесть отступление береговой линии. На мелководье происходит промерзание донного грунта в зимний период. Под слоем подвижного льда находится вечная мерзлота. Тепловое воздействие трубопровода на мёрзлый грунт также должно учитываться при проектировании, чтобы оттаивание грунта не повлияло на целостность трубопровода.

Монтаж конструкций

Несмотря на большой опыт строительства трубопроводов в различных регионах мира, опыт сооружения трубопроводных систем в условиях Арктики ограничен тремя проектами: Northstar, Oooguruk и Nikaitchuq. Укладка всех трёх трубопроводов производилась со льда во время зимнего строительного сезона. Трубопроводы были заглублены во избежание повреждений от ледового пропахивания.

В условиях Арктики для укладки трубопроводов на мелководье использовалось оборудование, размещённое на льду во время зимнего строительного сезона. Хотя до сих пор ни одного глубоководного арктического трубопровода построено не было, баржи-трубоукладчики применялись на больших глубинах в субарктических регионах (там, где не было льда).

В неарктических регионах, подверженных, тем не менее, ледовому пропахиванию, отраслевой опыт строительства трубопроводов был накоплен на российском шельфе (на о-ве Сахалин), где укладка велась с судов. В рамках проекта «Сахалин-2» были установлены платформы на месторождениях Пильтун-Астохское и Лунское, соединённые с берегом трубопроводной системой суммарной длинной 262 км. Помимо того, что эта система рассчитана на то, чтобы выдерживать землетрясения, трубопроводы были заглублены на 35 м во избежание повреждения от ледового пропахивания.

При определении глубины заглубления трубопроводов необходимо учитывать целый ряд факторов, таких как береговая эрозия, движение барханов, а также пропахивание морского дна килями ледовых торосов. Для уточнения величины и частоты ледовых пропахиваний и эрозии при проектировании трубопроводных систем нужно использовать специальные программы, предназначенные для исследования морского дна. Обычно для их проведения используют суда, оборудованные многолучевыми боковым и донным профилирующими сонарами. В случае ледовой эрозии дна до наступления сезона открытой воды используются вертолёты.

После сбора данных необходимо произвести их обработку и анализ для разработки соответствующих критериев проектирования. В прошлом обработка данных была трудоёмким и продолжительным процессом. В настоящее время с этой целью используют специальные компьютерные программы. Создаются подробные базы данных, в которых содержится информация по каждому объекту с указанием его местоположения, глубины, ширины, длины и т.д. Каждый такой набор данных содержит важнейшие параметры, используемые при проектировании, и охватывает большой диапазон глубин с информацией о частоте и величине ледового пропахивания.

Прогнозирование глубин

На параметры заглубления трубопроводных систем влияют следующие факторы: глубина ледового пропахивания, геометрия траншеи, деформации под бороздами пропахивания, тип грунта и его прочность на сдвиг. Основной задачей является устранение и изучение неопределённостей, связанных с расчётами глубины. Для этого необходимо определить проектную глубину пропахивания на основании полевых данных и физических ограничений, таких как прочность грунта и льда, а затем определить воздействие льда на грунт и нагрузку на трубопровод при помощи связанного (уточнённая модель грунта) и несвязанного (упрощённая модель грунта) анализов. Обычно трубопровод проектируется так, чтобы он не соприкасался с килем ледового тороса. Учитываются также нагрузки на траншею и грунт при укладке трубопровода и критерии проектирования трубопровода в части деформаций и нагрузок, влияющих на конструктивную целостность трубопровода.

Связанная модель – это трёхмерная модель, в которой грунт моделируется как континуум, а процесс пропахивания эксплицитно моделируется в среде грунта. Несвязанные модели – это главным образом двухмерные модели консольного типа, в которых грунт моделируется пружинами. Неустановившееся смещение (деформации под бороздами пропахивания), наложенное на основу пружин, моделирует влияние процесса пропахивания на трубопровод в несвязанных моделях; характеристики пружин являются упрощённым представлением поведения грунтовой среды в части кривых нагрузка/смещение.

Совместные отраслевые проекты позволяют получить лучшее представление о процессах пропахивания льда и требуемой глубине заглубления трубопроводов. Завершённое недавно исследование «Оценка и устранение рисков при строительстве трубопроводов», являющееся одним из совместных отраслевых проектов, было нацелено на создание инженерных моделей, разработку процедур проектирования и обобщение передового опыта в области защиты трубопроводов от килевых нагрузок. Под руководством Канадского центра гидравлических исследований недавно завершён совместный отраслевой проект по моделированию взаимодействия килей ледовых торосов и морского дна. Целью данного исследования было изучение процесса ледового пропахивания и его параметров – силы, глубины и их соотношений в условиях песчаных грунтов.

Механическая целостность трубопроводов и её мониторинг

Системы обнаружения утечек на трубопроводах подразделяются на программные и аппаратные системы. В рамках программных систем проводится сбор данных с датчиков, которые обычно используются при эксплуатации трубопроводов (датчики давления, температуры, расхода) для обнаружения и локализации потенциальных утечек на основании программных алгоритмов. В аппаратных системах для мониторинга утечек используются датчики, не связанные с обычным процессом эксплуатации трубопроводов. Для усовершенствования имеющихся в настоящее время программных систем мониторинга внедряется мониторинг испарений и оптоволоконные технологии.

Инновационные рубежи

Возможна укладка трубопроводов на короткие расстояния через скважины-шурфы, пробуренные с использованием безтраншейных методов укладки. Такие методы можно разделить на две основные категории: методы наклонно-направленного бурения и создание микротуннелей.

Наклонно-направленное бурение применяется при строительстве речных переходов и укладке коротких отрезков трубопроводов через недоступный рельеф. При использовании данного метода буровая установка наклонного бурения располагается на одном берегу реки. Она бурит такую же скважину, как и при бурении на нефть. Скважина обычно бурится на глубину порядка нескольких метров под поверхностью грунта с выходом на другой берег. Затем трубопровод или связка трубопроводов протягивается через скважину. Данный метод сводит к минимуму повреждение поверхности: параметры объёма вскрыши на погонный метр трубопровода позволяют заглублять трубопровод на глубину нескольких метров.

Следует отметить, что при прокладке трубопровода данным методом используется буровой раствор (бентонит). Выход бурового раствора в непредсказуемых местах и загрязнение окружающей среды раствором – главные недостатки данного метода. Кроме того, применение наклонно-направленного бурения может оказаться проблематичным из-за характеристик грунтов в Арктике.

Использование данного метода ограничено устойчивостью стенок скважины и усилием, необходимым для проталкивания колонны бурильных труб в скважину при бурении, а после его завершения – для проталкивания трубопровода через скважину. Большей длины можно достичь посредством строительства кессонов на мелководье через каждые 2 км трассы. Такая технология была успешно применена при соединении платформы Mittelplate в немецком секторе Северного мора с береговыми сооружениями посредством трубопровода длиной 11 км.

Технология создания микротуннелей задавливанием труб использовалась на участках берегового примыкания (например, участок трубопровода Europipe). Тем не менее, при применении данного метода длина всё ещё ограничена несколькими километрами в основном из-за необходимости проталкивания с одного конца трубопровода поддерживающей трубы. Обычная туннельная технология с использованием туннелепроходческих машин позволяет создавать сооружения поддержки непосредственно за забоем, вследствие чего можно увеличить длину самого туннеля. Для этого его диаметр должен составлять несколько метров (необходимо для установки оборудования). Однако применение такого метода для строительства трубопроводов, по мнению специалистов, вряд ли можно назвать практичным.

Настоящие ведомственные строительные нормы (ВСН) предназначены для проектирования и строительства морских магистральных газопроводов.

В ВСН приведены основные требования к проектированию и строительству морских газопроводов на континентальном шельфе России диаметром до 720 мм и внутреннем рабочем давлении не более 25 МПа. При конкретизации региона строительства настоящие ВСН должны быть дополнены требованиями, учитывающими специфику данного региона.

Обозначения и единицы измерения, используемые в настоящих нормах и правилах, приведены в .

Технические термины и определения, принятые в настоящих нормах и правилах, приведены в

Перечень нормативных документов, использованных при разработке настоящих норм и правил, приведен в

Разработаны и внесены
АО ВНИИСТ
ДОАО Гипроспецгаз ВНИИГАЗ

Утверждены ОАО "Газпром"

ЧАСТЬ 1. НОРМЫ ПРОЕКТИРОВАНИЯ

1. Общие положения

1.1. Морские магистральные газопроводы должны обладать повышенной надежностью при строительстве и эксплуатации с учетом особых условий (большие глубины моря, повышенная протяженность без промежуточных компрессорных станций, морские штормы, подводные течения, сейсмичность и другие факторы).

Проектные решения по прокладке морских газопроводов должны быть согласованы с Государственным Комитетом РФ по охране окружающей среды, Госгортехнадзором России и местными органами надзора.

1.2. По трассе морского газопровода устанавливаются охранные зоны, которые включают участки магистрального газопровода от компрессорных станций до уреза воды и далее по дну моря в пределах континентального шельфа, на расстояние не менее 500 м.

1.3. Диаметр морского газопровода и величина рабочего давления определяются из условий поставки природного газа Потребителю на основании гидравлического анализа.

1.4. Срок службы морского газопровода устанавливается Заказчиком проекта. На весь срок службы газопроводной системы должна быть рассчитана надежность и безопасность сооружения и такие воздействия, как коррозия металла и усталость применяемых материалов.

1.5. Границами морского участка магистрального газопровода является запорная арматура, установленная на противоположных берегах моря. Запорная арматура должна быть оснащена автоматикой аварийного закрытия.

1.6. На концах каждой нитки морского газопровода должны быть предусмотрены узлы пуска и приема очистных устройств и снарядов-дефектоскопов. Расположение и конструкция этих узлов определяются проектом.

1.7. Морской газопровод должен быть свободен от препятствий потоку транспортируемого продукта. В случае применения кривых искусственного гнутья или фитинговых изделий, их радиус должен быть достаточным для прохождения очистных и контрольных устройств, но не менее 10 диаметров трубопровода.

1.8. Расстояние между параллельными нитками морских газопроводов следует принимать из условий обеспечения надежности в процессе их эксплуатации, сохранности действующей нитки при строительстве новой нитки газопровода и безопасности при производстве строительно-монтажных работ.

1.9. Защита морского трубопровода от коррозии осуществляется комплексно: защитным наружным и внутренним покрытием и средствами катодной защиты.

Противокоррозионная защита должна способствовать безаварийной работе морского трубопровода на протяжении всего срока его эксплуатации.

1.10. Морской трубопровод должен иметь изолирующее соединение (фланец или муфту) с системой защиты от коррозии сухопутных участков магистрального газопровода.

1.11. Выбор трассы морского трубопровода должен производиться по критериям оптимальности и основываться на следующих данных:

· грунтовые условия морского дна;

· батиметрия морского дна;

· морфология морского дна;

· исходные сведения об окружающей среде;

· сейсмическая активность;

· районы рыболовства;

· судовые фарватеры и места заякоривания судов;

· районы сброса грунта;

· акватории с повышенным экологическим риском;

· характер и протяженность тектонических разломов. В качестве основных критериев оптимальности следует принимать техническую и экологическую безопасность сооружения.

1.12. В проекте необходимо представить данные о физическом и химическом составе транспортируемого продукта, его плотности, а также указать расчетное внутреннее давление и расчетную температуру вдоль всей трассы трубопровода. Приводятся также сведения о предельных значениях температуры и давления в трубопроводе.

Следует указать допустимые концентрации коррозионных компонентов в транспортируемом газе: сернистых соединений, воды, хлоридов, кислорода, двуокиси углерода и сероводорода.

1.13. Разработка проекта производится на основе анализа следующих основных факторов:

· направление и скорость ветра;

· высота, период и направление морских волн;

· скорость и направление морских течений;

· уровень астрономического прилива и отлива;

· штормовой нагон воды;

· свойства морской воды;

· температура воздуха и воды;

· рост морского обрастания на трубопроводе;

· сейсмическая обстановка;

· распространение промысловых и охраняемых видов морской флоры и фауны.

1.14. В проекте должен быть представлен анализ допустимых пролетов и устойчивости трубопровода на дне моря, а также расчет патрубков - ограничителей лавинного смятия трубопровода в процессе его укладки на больших глубинах моря.

1.15. Газопровод должен заглубляться в дно на участках его выхода на берег. Проектная отметка верха заглубленного в грунт трубопровода (по утяжеляющему покрытию) должна назначаться ниже прогнозируемой глубины размыва дна акватории или берегового участка на весь период эксплуатации морского трубопровода.

1.16. На глубоководных участках газопровод можно прокладывать по поверхности дна моря при условии обеспечения его проектного положения в процессе всего периода эксплуатации. При этом необходимо обоснование исключения всплытия или подвижек трубопровода под воздействием внешних нагрузок и его повреждения рыболовецкими тралами или якорями судов.

1.17. При проектировании морской трубопроводной системы должны быть учтены все виды воздействия на трубопровод, которые могут потребовать дополнительной защиты:

· возникновение и распространение растрескивания или смятия труб и сварных швов в процессе монтажа или эксплуатации;

· потеря устойчивости положения трубопровода на дне моря;

· потеря механических и служебных свойств трубной стали в процессе эксплуатации;

· недопустимо большие пролеты трубопровода на дне;

· эрозия морского дна;

· удары по трубопроводу якорями судов или рыболовецких тралов;

· землетрясения;

· нарушение технологического режима транспортировки газа. Выбор способа защиты принимается в проекте в зависимости от местных условий окружающей среды и степени потенциальной угрозы морскому газопроводу.

1.18. В проектной документации должны быть отражены следующие данные: размеры труб, вид транспортируемого продукта, срок службы трубопроводной системы, глубина воды по трассе газопровода, тип и класс стали, необходимость термообработки после сварки кольцевых монтажных сварных стыков, система противокоррозионной защиты, планы будущего развития регионов вдоль трассы трубопроводной системы, объёмы работ и графики строительства.

На чертежах необходимо указать местоположение трубопроводной системы относительно близлежащих населенных пунктов и гаваней, курсов следования кораблей, а также других видов сооружений, способных оказать влияние на надежность трубопроводной системы.

В проекте учитываются все виды нагрузок, возникающих при изготовлении, укладке и эксплуатации трубопроводной системы, которые могут повлиять на выбор проектного решения. Выполняются все необходимые расчеты трубопроводной системы на эти нагрузки, включая: анализ прочности трубопроводной системы при монтаже и эксплуатации, анализ устойчивости положения трубопровода на дне моря, анализ усталостного и хрупкого разрушения трубопровода с учетом сварных кольцевых швов, анализ устойчивости стенки трубы на смятие и избыточных деформаций, анализ вибраций, если это необходимо, анализ стабильности основания морского дна.

1.19. В составе проекта морского газопровода необходимо разработать следующую документацию:

· технические условия на материал труб;

· технические условия на сварку труб и неразрушающий контроль с указанием норм допустимых дефектов сварных швов;

· технические условия на усиленные вставки для ограничения лавинного смятия трубопровода;

· технические условия на наружное и внутреннее антикоррозионное покрытие труб;

· технические условия на утяжеляющее покрытие труб;

· технические условия на материал для изготовления анодов;

· технические условия на укладку морского участка трубопровода;

· технические условия на строительство трубопровода при пересечении береговой линии и берегозащитные мероприятия;

· технические условия на испытания и ввод в эксплуатацию морского трубопровода;

· технические условия на обслуживание и ремонт морского трубопровода;

· общую спецификацию материалов;

· описание строительных плавсредств и другого используемого оборудования.

При разработке "Технических условий" и "Спецификаций" должны быть использованы требования настоящих норм и рекомендации общепризнанных международных стандартов (1993), DNV (1996) и (1993), а также результаты научных исследований по этой проблеме.

1.20. Проектно-конструкторская документация, включая протоколы испытаний, материалы изысканий и исходной диагностики должны быть сохранены в течение всего срока службы морской трубопроводной системы. Необходимо сохранять также отчеты о работе трубопроводной системы, об инспекционном контроле в процессе её эксплуатации, а также данные о техническом обслуживании морской трубопроводной системы.

1.21. Экспертиза проектной документации должна выполняться независимыми организациями, которым проектная организация представляет всю необходимую документацию.

2. Расчетные критерии для трубопроводов.

2.1. Критерии прочности в данных нормах основаны на допускаемых напряжениях с учетом остаточных сварочных напряжений. Можно использовать также методы расчета по предельному состоянию, при условии, что эти методы обеспечат надежность морской трубопроводной системы, требуемую настоящими нормами.

2.2. Расчеты морского газопровода необходимо производить на статические и динамические нагрузки и воздействия с учетом работы сварных кольцевых швов в соответствии с требованиями строительной механики, прочности материалов и механики грунтов, а также требованиями настоящих норм.

2.3. Точность методов расчета должна быть обоснована практической и экономической целесообразностью. Результаты аналитических и численных решений, при необходимости, должны быть подтверждены лабораторными или натурными испытаниями.

2.4. Расчет морского газопровода производится на наиболее неблагоприятное сочетание реально ожидаемых нагрузок.

2.5. Для морского газопровода расчеты следует выполнять отдельно на нагрузки и воздействия, возникающие при его строительстве, включая гидростатические испытания, и на нагрузки и воздействия, возникающие при эксплуатации морской трубопроводной системы.

2.6. При расчетах на прочность и деформативность основные физические характеристики стали следует принимать по "Техническим условиям на материал труб".

3. Нагрузки и воздействия.

3.1. В данных нормах приняты следующие сочетания нагрузок при расчетах морского газопровода:

· постоянно действующие нагрузки;

· постоянно действующие нагрузки совместно с нагрузками окружающей среды;

· постоянно действующие нагрузки в комбинации со случайными нагрузками.

3.2. К постоянно действующим нагрузкам на морской трубопровод в процессе его строительства и последующей эксплуатации относятся:

· вес конструкции трубопровода, включая утяжеляющее покрытие, морское обрастание и прочее;

· наружное гидростатическое давление морской воды;

· выталкивающая сила водной среды;

· внутреннее давление транспортируемого продукта;

· температурные воздействия;

· давление грунта засыпки.

3.3. К воздействиям окружающей среды на морской трубопровод относятся:

· нагрузки, вызванные подводными течениями;

· нагрузки, вызванные морским волнением.

При расчетах морского трубопровода на период строительства следует учитывать также нагрузки от строительных механизмов и нагрузки, возникающие в процессе гидростатических испытаний.

3.4. К случайным нагрузкам относятся: сейсмическая активность, деформация грунтов морского дна и оползневые процессы.

3.5. При определении нагрузок и воздействий на морской трубопровод следует основываться на данных инженерных изысканий, проводимых в зоне прохождения трассы трубопровода, включая инженерно-геологические, метеорологические, сейсмические и другие виды изысканий.

Нагрузки и воздействия должны подбираться с учетом прогнозного изменения условий окружающей среды и технологического режима транспортировки газа.

4. Допустимые расчетные напряжения и деформации.

4.1. Допустимые напряжения при расчетах на прочность и устойчивость морских трубопроводов устанавливаются в зависимости от предела текучести металла применяемых труб с использованием расчетного коэффициента "К", значения которого приведены в

s доп £ K × s Т (1)

Значения расчетных коэффициентов надежности "К" для морских газопроводов.

Кольцевые растягивающие напряжения при постоянно действующих нагрузках

Суммарные напряжения при постоянных нагрузках в комбинации с нагрузками окружающей среды или случайными нагрузками

Суммарные напряжения в процессе строительства или проведения гидростатических испытаний

Морской газопровод

Береговые и прибрежные участки газопровода в охранной зоне

Морской газопровод, включая береговые и прибрежные участки в охранной зоне

0,72

0,60

0,80

0,96

4.2. Максимальные суммарные напряжения, вызванные внутренним и наружным давлением, продольными усилиями с учетом овальности труб, не должны превышать допускаемые значения:

4.3. Трубопроводы следует проверять на прочность и местную устойчивость сечения трубы от наружного гидростатического давления. В этом случае внутреннее давление в трубопроводе принимают равным 0,1 МПа.

4.4. Значение овальности труб устанавливается по формуле:

(3)

Допустимая суммарная овальность, включая начальную овальность труб (заводские допуски), не должна превышать 1,0 % (0,01).

4.5. Остаточная деформация в морском трубопроводе должна быть не более 0,2 % (0,002).

4.6. На участках возможных просадок морского трубопровода необходимо производить расчет прогнозируемого искривления оси трубопровода от собственного веса с учетом внешних нагрузок.

4.7. В проекте следует дать анализ всем возможным колебаниям напряжений в трубопроводе по интенсивности и частоте, способных вызвать усталостные разрушения в процессе строительства или при дальнейшей эксплуатации морской трубопроводной системы (гидродинамические воздействия на трубопровод, колебания рабочего давления и температуры и другие). Особое внимание следует уделять участкам трубопроводной системы, предрасположенным к концентрации напряжений.

4.8. Для расчета усталостных явлений можно использовать методики, основанные на механике разрушений при испытании труб на малоцикловую усталость.

5. Расчет толщины стенки трубопровода.

5.1. Для морского газопровода толщину стенки труб следует рассчитывать для двух ситуаций, определяемых действующими нагрузками:

На внутреннее давление в трубопроводе для мелководных, береговых и прибрежных участков газопровода, расположенных в охранной зоне;

На смятие газопровода под воздействием наружного давления, растяжения и изгиба для глубоководных участков по трассе трубопровода.

5.2. Расчет минимальной толщины стенки морского газопровода под воздействием внутреннего давления следует производить по формуле:

()

Примечание:

Приведенная зависимость применима для диапазона расчетных температур транспортируемого газа между - 15°С и + 120°С при условии обеспечения равнопрочности сварных соединений с основным металлом труб и обеспечения необходимой твердости сварных кольцевых соединений и их стойкости против сероводородного растрескивания.

5.3. Номинальная толщина стенки труб устанавливается по минимальной толщине, полученной по формуле (), с округлением до ближайшего большего значения, предусмотренного государственными стандартами или техническими условиями.

5.4. Толщина стенки трубопровода должна быть достаточной с учетом нагрузок, возникающих при монтаже, укладке, гидравлических испытаниях трубопровода и при его эксплуатации.

5.5. При необходимости возможно добавлять к расчетной номинальной толщине стенки трубопровода допуски на внутреннюю коррозию.

Если предусматривается программа мониторинга коррозии или закачки ингибиторов, добавление допусков на коррозию не требуется.

5.6. Для предотвращения смятия стенки трубопровода на глубоководных участках трассы под воздействием наружного давления, растяжения и изгиба необходимо выполнение условия:

(5)

5.7. При определении толщины стенки труб в условиях совместного воздействия изгиба и сжатия в расчетах следует принимать значение предела текучести на сжатие, равное 0,9 от предела текучести материала труб.

5.8. При использовании методов укладки с полным контролем деформации изгиба трубопровода допустимая деформация изгиба при укладке трубопровода на глубинах моря более 1000 м не должна превышать 0,15 % (0,0015). При этом критическое значение деформации изгиба трубопровода на таких глубинах составит 0,4 % (0,004).

6. Устойчивость стенки трубопровода под воздействием внешнего гидростатического давления и изгибающего момента.

6.1. Для диапазона соотношений 15

(6)

(7)

При этом, начальная овальность трубы не должна превышать 0,5 % (0,005).

6.2. Наружное гидростатическое давление на трубу при фактической глубине воды определяется по формуле:

(9)

6.3. Следует также учитывать, что при давлении, превышающем критическое значение, местное поперечное смятие трубы может развиться вдоль продольной оси трубопровода.

Наружное гидростатическое давление, при котором может произойти распространение возникшего ранее смятия, устанавливается по формуле:

(10)

6.4. Для исключения развития смятия по длине трубопровода, на трубопроводе необходимо предусмотреть установку ограничителей смятия в виде колец жесткости или патрубков с увеличенной толщиной стенки.

Длина ограничителей должна быть не менее четырех диаметров трубы.

7. Устойчивость трубопровода на дне моря при воздействии гидродинамических нагрузок.

7.1. Расчеты трубопровода должны проводиться для проверки устойчивости положения трубопровода на дне моря в процессе его строительства и эксплуатации.

Если трубопровод заглублен в непрочном грунте, а его плотность меньше плотности окружающего грунта, следует установить, что сопротивление грунта срезающим усилиям достаточно для предотвращения всплытия трубопровода на поверхность.

7.2. Относительная плотность трубопровода с утяжеляющим покрытием должна быть больше плотности морской воды с учетом наличия в ней взвешенных частиц грунта и растворенных солей.

7.3. Величина отрицательной плавучести трубопровода из условия устойчивости его положения на дне моря определяется по формуле:

(11)

7.4. При определении устойчивости морских трубопроводов на дне моря под воздействием гидродинамических нагрузок расчетные характеристики ветра, уровня воды и элементов волн следует принимать в соответствии с требованиями
*.

Допускается оценка гидродинамической устойчивости трубопровода с применением методов анализа, учитывающих перемещение трубопровода в процессе самозаглубления в грунт.

7.5. Максимальную горизонтальную (Р х + Р и) и соответствующую ей вертикальную Рz проекции линейной нагрузки от волн и морских течений, действующих на трубопровод, необходимо определять по формулам *.

7.6. Расчёты значений скоростей придонных течений и волновых нагрузок следует производить для двух случаев:

· повторяемостью один раз в 100 лет при расчетах на период эксплуатации морской трубопроводной системы;

· повторяемостью один раз в год при расчётах на период строительства морской трубопроводной системы.

7.7. Значения коэффициентов трения необходимо принимать по данным инженерных изысканий для соответствующих фунтов по трассе морского трубопровода.

8. Материалы и изделия.

8.1. Материалы и изделия, применяемые в морской трубопроводной системе, должны отвечать требованиям утвержденных стандартов, технических условий и других нормативных документов.

Не допускается применять материалы и изделия, на которые отсутствуют сертификаты, технические свидетельства, паспорта и другие документы, подтверждающие их качество.

8.2. Требования к материалу труб и соединительным деталям, а также к запорной и регулирующей арматуре должны отвечать требованиям "Технических условий" на эти изделия, в которые включают: технологию производства изделия, химический состав, термическую обработку, механические свойства, контроль качества, сопроводительную документацию и маркировку.

При необходимости, в "Технических условиях" приводятся требования к проведению специальных испытаний труб и их сварных соединений, в том числе и в сероводородной среде, с целью получения их положительных результатов до начала производства основной партии труб, предназначенных для строительства морского газопровода.

8.3. В "Технических условиях на сварку труб и неразрушающий контроль" следует указать требования к дефектам сварных швов, при которых разрешено производить ремонт кольцевых сварных соединений трубопровода. Необходимо также привести данные по термообработке сварных соединений или сопутствующем их нагреве после сварки при монтаже трубопровода.

8.4. Для сварочных электродов и других изделий должны быть представлены спецификации на их изготовление.

8.5. Допуски на овальность труб при их изготовлении (заводской допуск) в любом сечении трубы не должны превышать + 0,5 %.

8.6. Соединительные детали, предназначенные для морского трубопровода, должны испытываться в заводских условиях гидравлическим давлением в 1,5 раза большим рабочего давления.

8.7. Для автоматической сварки стыков труб могут применяться следующие сварочные материалы:

· керамические или плавленые флюсы специальных составов;

· сварочные проволоки специального химического состава для сварки под флюсом или в защитных газах;

· аргон газообразный;

· специальные смеси аргона с углекислым газом;

· самозащитная порошковая проволока.

Сочетания конкретных марок флюсов и проволок, марки самозащитных порошковых проволок и проволок для сварки в защитных газах, должны выбираться с учетом их стойкости в сероводородной среде и быть аттестованы в соответствии с требованиями "Технических условий на сварку труб и неразрушающий контроль".

8.8. Для ручной дуговой сварки и ремонта морского трубопровода должны использоваться электроды с основным или целлюлозным видом покрытия. Конкретные марки сварочных электродов должны выбираться с учетом их стойкости в сероводородной среде и быть аттестованы в соответствии с требованиями "Технических условий на сварку труб и неразрушающий контроль".

8.9. Утяжеляющее покрытие труб должно назначаться из армированного стальной сеткой бетона, наносимого на отдельные изолированные трубы в заводских условиях в соответствии с требованиями "Технических условий на утяжеляющее покрытие труб".

Класс и марка бетона, его плотность, толщина бетонного покрытия, масса обетонированной трубы определяются проектом.

Стальная арматура не должна образовывать электрического контакта с трубой или анодами, а также не должна выходить на наружную поверхность покрытия.

Между утяжеляющим покрытием и трубой должно быть обеспечено достаточное сцепление, исключающее проскальзывание при усилиях, возникающих в процессе укладки и эксплуатации трубопровода.

8.10. Армированное бетонное покрытие на трубах должно обладать химической и механической стойкостью по отношению к воздействиям внешней среды. Тип арматуры выбирается в зависимости от нагрузок на трубопровод и условий эксплуатации. Бетон для утяжеляющего покрытия должен обладать достаточной прочностью и долговечностью.

Каждая обетонированная труба, поступающая на строительную площадку, должна иметь специальную маркировку.

ЧАСТЬ 2. ПРОИЗВОДСТВО И ПРИЕМКА РАБОТ

1. Общие положения

При строительстве морских газопроводов следует применять проверенные опытом технологические процессы, оборудование и строительную технику.

2. Сварка труб и методы контроля сварных соединений.

2.1. Соединения труб при строительстве могут выполняться с использованием двух организационных схем:

· с предварительной сваркой труб в двух- или четырехтрубные секции, которые затем свариваются в непрерывную нитку;

· сваркой отдельных труб в непрерывную нитку.

2.2. Сварочный процесс выполняется в соответствии с "Техническими условиями на сварку труб и неразрушающий контроль" одним из следующих способов:

· автоматическая или полуавтоматическая сварка в среде защитного газа плавящимся или неплавящимся электродом;

· автоматическая или полуавтоматическая сварка самозащитной проволокой с принудительным или свободным формированием металла шва;

· ручная сварка электродами с покрытием основного типа или с целлюлозным покрытием;

· электроконтактная сварка непрерывным оплавлением с послесварочной термической обработкой и радиографическим контролем качества сварных соединений.

При сварке двух- или четырехтрубных секций на вспомогательной линии может применяться также автоматическая сварка под флюсом.

"Технические условия" разрабатываются в составе проекта Подрядчиком и утверждаются Заказчиком на основе проведения исследований по свариваемости опытной партии труб и получения необходимых свойств сварных кольцевых соединений, в том числе по их надежности и работоспособности в сероводородной среде, и проведения соответствующей аттестации технологии сварки.

2.3. Перед началом строительных работ способы сварки, сварочное оборудование и материалы, принятые к использованию, должны быть аттестованы на сварочной базе или на трубоукладочном судне в условиях, приближенных к условиям строительства, в присутствии представителей Заказчика и приняты Заказчиком.

2.4. Все операторы автоматической и полуавтоматической сварки, а также сварщики-ручники должны быть аттестованы в соответствии с требованиями DNV (1996) или с учетом дополнительных требований по стойкости сварных соединений при работе в сероводородной среде.

Аттестация должна проводиться в присутствии представителей Заказчика.

2.5. Сварщики, которые должны выполнять сварку под водой, дополнительно должны пройти соответствующее обучение, а затем специальную аттестацию в камере под давлением с имитацией натурных условий работы на дне моря.

2.6. Сварные кольцевые соединения труб должны соответствовать требованиям "Технических условиях на сварку труб и неразрушающий контроль".

2.7. Кольцевые сварные соединения подвергаются 100 % радиографическому контролю с дублированием 20 % стыков автоматизированным ультразвуковым контролем с записью результатов контроля на ленту.

При согласовании с Заказчиком допускается применение 100 % автоматизированного ультразвукового контроля с записью на ленте 25 % дублирующего радиографического контроля.

Приемка сварных соединений производится в соответствии с требованиями "Технических условий на сварку труб и неразрушающий контроль", которые должны включать нормы допустимых дефектов в сварных швах.

2.8. Кольцевые сварные швы считаются принятыми только после их одобрения представителем Заказчика на основе просмотра радиографических снимков и записей результатов ультразвукового контроля. Документация с записями результатов процесса сварки и контроля сварных стыков труб сохраняется эксплуатирующей трубопровод организацией на протяжении всего срока службы морского трубопровода.

2.9. При соответствующем обосновании разрешается производить соединение плетей трубопровода или ремонтные работы на дне моря, с применением стыковочных устройств и гипербарической сварки. Процесс подводной сварки должен быть классифицирован соответствующими испытаниями.

3. Защита от коррозии

3.1. Морской газопровод должен быть изолирован по всей наружной и внутренней поверхности антикоррозионным покрытием. Изоляция труб должна быть произведена в заводских или базовых условиях.

3.2. Изоляционное покрытие должно соответствовать требованиям "Технических условий на наружное и внутреннее антикоррозионное покрытие труб" на весь период службы трубопровода по следующим показателям: прочность при разрыве, относительное удлинение при рабочей температуре, прочность при ударе, адгезия к стали, предельная площадь отслаивания в морской воде, грибостойкость, сопротивление вдавливанию.

3.3. Изоляция должна выдерживать испытания на пробой при напряжении не менее
5 кВ на миллиметр толщины.

3.4. Изоляция сварных стыков, крановых узлов и фасонной арматуры должна по своим характеристикам соответствовать требованиям, предъявляемым к изоляции труб.

Изоляция мест подключения устройств электрохимической защиты и контрольно-измерительной аппаратуры, а также восстановленная изоляция на поврежденных участках должны обеспечивать надежную адгезию и защиту от коррозии металла труб.

3.5. При выполнении изоляционных работ должен производиться:

· контроль качества применяемых материалов;

· пооперационный контроль качества этапов изоляционных работ.

3.6. В период транспортировки, погрузочно-разгрузочных работ и складирования труб должны быть предусмотрены специальные меры, исключающие механические повреждения изоляционного покрытия.

3.7. Изоляционное покрытие на законченных строительством участках трубопровода подлежит контролю методом катодной поляризации.

3.8. Электрохимическая защита системы морских трубопроводов производится с помощью протекторов. Все оборудование электрохимической защиты должно быть рассчитано на полный срок эксплуатации системы морских газопроводов.

3.9. Протекторы должны быть изготовлены из материалов (сплавов на основе алюминия или цинка), прошедших натурные испытания и отвечающих требованиям "Технических условий на материал для изготовления анодов", разрабатываемых в составе проекта.

3.10. Протекторам необходимо иметь два соединительных кабеля с трубой. Протекторы браслетного типа устанавливают на трубопроводе таким образом, чтобы избежать их механического повреждения при транспортировке и укладке трубопровода.

Дренажные кабели защитных устройств следует присоединять к трубопроводу с помощью ручной аргонодуговой или конденсаторной сварки.

При согласовании с Заказчиком можно использовать ручную электродуговую сварку электродами.

3.11. На морском трубопроводе должны быть обеспечены потенциалы непрерывно по всей его поверхности в течение всего периода эксплуатации. Для морской воды минимальные и максимальные значения защитных потенциалов приведены в . Указанные потенциалы рассчитаны для морской воды с соленостью от 32 до 28 %о при температуре от 5 до 25° С.

Минимальные и максимальные защитные потенциалы

3.12. Электрохимическая защита должна быть введена в действие не позднее 10 суток с момента окончания работ по укладке трубопровода.

4. Выходы трубопровода на берег

4.1. Для выхода трубопровода на берег могут быть использованы следующие способы строительства:

· открытые земляные работы с устройством шпунтовых ограждений на береговой полосе;

· направленное бурение, при котором трубопровод протаскивают через предварительно пробуренную скважину на прибрежном участке;

· тоннельный способ.

4.2. При выборе способа строительства трубопровода на участках выхода на берег следует учитывать рельеф береговых участков и другие местные условия в районе строительства, а также оснащенность строительной организации техническими средствами, используемыми для производства работ.

4.3. Выходы трубопровода на берег с применением наклонно-направленного бурения или тоннеля должны быть обоснованы в проекте экономической и экологической целесообразностью их применения.

4.4. При строительстве трубопровода на прибрежном участке с применением подводных земляных работ могут быть применены следующие технологические схемы:

· плеть трубопровода требуемой длины изготавливается на трубоукладочном судне и протягивается к берегу по дну ранее подготовленной подводной траншеи с применением тяговой лебедки, установленной на берегу;

· плеть трубопровода изготавливается на береговой площадке, проходит гидростатические испытания и затем вытягивается в море по дну подводной траншеи с помощью тяговой лебедки, установленной на трубоукладочном судне.

4.5. Строительство морского трубопровода на прибрежных участках производится в соответствии с требованиями "Технических условий на строительство трубопровода при пересечении береговой линии", разрабатываемых в составе проекта.

5. Подводные земляные работы

5.1. Технологические процессы разработки траншеи, укладки трубопровода в траншею и его засыпки грунтом должны быть максимально совмещены во времени с учетом заносимости траншеи и переформирования ее поперечного профиля. При засыпке подводных траншей должны быть разработаны технологические мероприятия, снижающие до минимума потери грунта за границами траншеи.

Технология разработки подводных траншей должна быть согласована с природоохранными органами.

5.2. Параметры подводной траншеи должны быть по возможности минимальными, для чего следует обеспечивать повышенную точность их разработки. Требования повышенной точности распространяются также и на засыпку трубопровода.

В зоне трансформации морских волн следует назначать более пологие откосы с учетом переформирования поперечного сечения траншеи.

5.3. Параметры подводной траншеи на участках, глубины которых с учетом
сгонно-нагонных и приливно-отливных колебаний уровня воды, менее осадки землеройной техники, следует принимать в соответствии снормами эксплуатации морских судов и обеспечения безопасных глубин в границах рабочих перемещений землеройной техники и обслуживающих её судов.

5.4. Объемы временных отвалов грунта должны быть сведены к минимуму. Местоположение складирования разрабатываемого грунта должно быть выбрано с учетом минимального загрязнения окружающей среды и согласовано с организациями, контролирующими экологическое состояние района строительства.

5.5. Если проектом разрешается использовать для засыпки траншеи местный грунт, то при строительстве многониточной трубопроводной системы допускается траншею с уложенным трубопроводом засыпать грунтом, отрываемым из траншеи параллельной нитки.

6. Укладка с трубоукладочного судна

6.1. Выбор метода укладки морского трубопровода производится на основе его технологической выполнимости, экономической эффективности и безопасности для окружающей среды. Для больших глубин моря рекомендуются методы укладки трубопровода по S-образной и J-образной кривой с использованием трубоукладочного судна.

6.2. Укладка морского трубопровода производится в соответствии с требованиями "Технических условий на строительство морского участка трубопровода", разрабатываемых в составе проекта.

6.3. Трубоукладочное судно до начала производства строительных работ должно пройти испытания, включая испытания сварочного оборудования и неразрушающих методов контроля, оборудования для изоляции и ремонта сварных стыков труб, натяжных устройств, лебедок, приборов контроля и систем управления, обеспечивающих перемещение судна по трассе и укладку трубопровода на проектные отметки.

6.4. На мелководных участках трассы трубоукладочное судно должно обеспечивать укладку трубопровода в подводную траншею в пределах допусков, определяемых проектом. Для контроля положения судна относительно траншеи следует использовать сканирующие эхолоты и гидролокаторы кругового обзора.

6.5. Перед началом укладки трубопровода в траншею следует выполнить подчистку подводной траншеи и произвести контрольные промеры с построением продольного профиля траншеи. При протаскивании трубопровода по дну моря необходимо выполнить расчеты тяговых усилий и напряженного состояния трубопровода.

6.6. Тяговые средства выбирают по максимальному расчетному тяговому усилию, которое в свою очередь зависит от длины протаскиваемого трубопровода, коэффициента трения и веса трубопровода в воде (отрицательной плавучести).

Значения коэффициентов трения скольжения должны назначаться по данным инженерных изысканий с учетом возможности погружения трубопровода в грунт, несущей способности грунта и отрицательной плавучести трубопровода.

6.7. Для уменьшения тяговых усилий при укладке, на трубопровод могут быть установлены понтоны, уменьшающие его отрицательную плавучесть. Понтоны должны быть проверены на прочность от воздействия гидростатического давления и иметь устройства для механической отстропки.

6.8. Перед укладкой трубопровода на глубоководном участке необходимо выполнить расчеты напряженно-деформированного состояния трубопровода для основных технологических процессов:

· начало укладки;

· непрерывная укладка трубопровода с изгибом по S-образной или J-образной кривой;

· укладка трубопровода на дно во время шторма и его подъем;

· окончание укладочных работ.

6.9. Укладку трубопровода следует выполнять строго в соответствии с проектом организации строительства и проектом производства работ.

6.10. В процессе укладки трубопровода должны непрерывно контролироваться кривизна трубопровода и напряжения, возникающие в трубопроводе. Значения этих параметров должны определяться на основе расчетов нагрузок и деформаций до начала укладки трубопровода.

7. Берегозащитные мероприятия

7.1. Крепление береговых склонов после укладки трубопровода производится выше максимального расчетного уровня воды и должно обеспечивать защиту берегового склона от разрушения под воздействием волновых нагрузок, дождевых и талых вод.

7.2. При производстве берегозащитных работ следует применять проверенные опытом экологически чистые конструкции, технологические процессы и работы выполнять в соответствии с требованиями "Технических условий на строительство трубопровода при пересечении береговой линии и берегозащитные мероприятия".

8. Контроль за качеством строительства

8.1. Контроль за качеством строительства должен осуществляться независимыми техническими подразделениями.

8.2. Для достижения необходимого качества строительных работ необходимо обеспечить контроль качества выполнения всех технологических операций по изготовлению и монтажу трубопровода:

· процесс доставки труб от завода-изготовителя до монтажной площадки должен гарантировать отсутствие механических повреждений на трубах;

· контроль качества обетонированных труб должен осуществляться в соответствии с техническими требованиями на поставку обетонированных труб;

· поступающие трубы, сварочные материалы (электроды, флюс, проволока) должны иметь Сертификаты, соответствующие требованиям технических условий на их поставку;

· при сварке труб необходимо осуществлять систематический пооперационный контроль за процессом сварки, визуальный осмотр и обмер сварных соединений и проверку всех кольцевых сварных швов неразрушающими методами контроля;

· изоляционные материалы, предназначенные для монтажных стыков труб не должны иметь механических повреждений. Контроль качества изоляционных покрытий должен предусматривать проверку сплошности покрытия с применением дефектоскопов.

8.3. Морская землеройная техника, трубоукладочные баржи и обслуживающие их суда должны быть оснащены автоматической системой ориентации, предназначенной для постоянного контроля планового положения этих технических средств в процессе их работы.

8.4. Контроль глубины залегания трубопровода в грунте должен выполняться с помощью методов телеметрии, ультразвуковых профилографов или водолазных обследований после укладки трубопровода в траншею.

Если глубина залегания трубопровода в грунте оказывается недостаточной, предпринимаются исправительные мероприятия.

8.5. В процессе укладки трубопровода необходимо производить контроль основных технологических параметров (положение стингера, натяжение трубопровода, скорость перемещения трубоукладочного судна и др.) на предмет их соответствия проектным данным.

8.6. Для контроля за состоянием дна и положения трубопровода необходимо периодически с помощью водолазов или подводных аппаратов производить обследование, которое позволит выявить фактическое расположение трубопровода (размывы, провисы), а также возможные деформации дна вдоль трубопровода, вызванные волнением или подводными течениями в этой зоне.

9. Очистка полости и испытание

9.1. Морские трубопроводы подвергаются гидростатическим испытаниям после укладки на морское дно в соответствии с требованиями "Технических условий на испытания и ввод в эксплуатацию морского газопровода", разрабатываемых в составе проекта.

9.2. Предварительное испытание плетей трубопровода на берегу выполняется лишь в том случае, если проектом предусматривается изготовление плетей трубопровода на берегу и их укладка в море способами протаскивания в направлении к трубоукладочному судну.

9.3. До начала гидростатических испытаний необходимо произвести очистку и контроль внутренней полости трубопровода с применением скребков, оснащенных приборами контроля.

9.4. Минимальное давление при гидростатических испытаниях на прочность принимается в 1,25 раза выше расчетного давления. При этом кольцевые напряжения в трубе во время испытания на прочность не должны превышать 0,96 от предела текучести металла труб.

Время выдержки трубопровода под давлением гидростатического испытания должно составлять не менее 8 часов.

Трубопровод считается выдержавшим опрессовку, если в течение последних четырех часов испытаний не было зарегистрировано падений давления.

9.5. Проверку герметичности морского газопровода производят после испытания на прочность и снижения испытательного давления до расчетного значения в течение времени, необходимого для осмотра трубопровода.

9.6. Удаление воды из трубопровода должно производиться с пропуском не менее двух (основного и контрольного) поршней-разделителей под давлением сжатого воздуха или газа.

Результаты удаления воды из газопровода следует считать удовлетворительными, если впереди контрольного поршня-разделителя нет воды и он вышел из газопровода не разрушенным. В противном случае пропуск контрольного поршня-разделителя по трубопроводу необходимо повторить.

9.7. Если в процессе испытаний произойдет разрыв трубопровода или утечка в нем, то дефект должен быть устранен, а морской трубопровод подвергнут повторному испытанию.

9.8. Сдача морского трубопровода в эксплуатацию производится после окончательной очистки и калибровки внутренней полости трубопровода, проведения исходной диагностики и заполнения трубопровода транспортируемым продуктом.

9.9. Результаты производства работ по очистке полости и испытанию трубопровода, а также удалению воды из трубопровода должны быть оформлены актами по утвержденной форме.

10. Охрана окружающей среды

10.1. В морских условиях все виды работ требуют тщательного выбора технологических процессов, технических средств и оборудования, обеспечивающих сохранность экологической среды региона. Разрешается использовать лишь те технологические процессы, которые обеспечат минимальное отрицательное воздействие на окружающую среду и быстрое ее восстановление после завершения строительства системы морских газопроводов.

10.2. При проектировании системы морских газопроводов все мероприятия по охране окружающей среды должны быть включены в надлежащим образом утвержденный план оценки воздействия на окружающую среду (ОВОС).

10.3. При сооружении системы морских газопроводов необходимо строгое выполнение природоохранных требований российских стандартов. На акваториях, имеющих промысловое рыбохозяйственное значение, необходимо предусматривать мероприятия по сохранению и восстановлению биологических и рыбных ресурсов.

Сроки начала и окончания подводных земляных работ с использованием средств гидромеханизации или взрывных работ устанавливаются с учетом рекомендаций органов рыбоохраны, исходя из сроков нереста, нагула, миграции рыбы, а также циклов развития планктона и бентоса в прибрежной зоне.

10.4. В план ОВОС должен входить комплекс конструктивных, строительных и технологических мероприятий, обеспечивающих охрану окружающей среды при строительстве и эксплуатации системы морских газопроводов.

В процессе разработки ОВОС учитываются следующие факторы:

· исходные данные по природным условиям, фоновому экологическому состоянию, биологическим ресурсам акватории, характеризующим естественное состояние региона;

· технологические и конструктивные особенности системы морского газопровода;

· сроки, технические решения и технология выполнения подводно-технических работ, перечень технических средств, используемых для строительства;

· оценка современного и прогнозируемого состояния окружающей среды и экологического риска с указанием источников риска (техногенных воздействий) и вероятных ущербов;

· основные экологические требования, технические и технологические решения по защите окружающей среды при строительстве и эксплуатации морского газопровода и мероприятия по их реализации на объекте;

· мероприятия по обеспечению контроля за техническим состоянием системы морских газопроводов и оперативному устранению аварийных ситуаций;

· мониторинг по состоянию окружающей среды в регионе;

· размеры капитальных вложений в природоохранные, социальные и компенсационные мероприятия;

· оценка эффективности намечаемых природоохранных и социально-экономических мер и компенсаций.

10.5. В процессе эксплуатации системы морских газопроводов необходимо прогнозировать возможность разрыва трубопровода и выброса продукта с оценкой ожидаемого ущерба биоте моря с учетом возможного скопления рыбы (нерест, миграция, период нагула) вблизи створа системы трубопроводов и осуществлять реализацию защитных мер для трубопровода и окружающей среды, предусмотренных для таких случаев проектом.

10.6. Для защиты и сохранения природной среды на акватории моря и в береговой зоне необходима организация постоянного надзора за соблюдением природоохранных мер в процессе всего периода техногенного воздействия, вызванного производством работ при строительстве и эксплуатации системы морских газопроводов.

Приложение 1.
Обязательное.

Обозначения и единицы измерения

D - номинальный диаметр трубопровода, мм;

t - номинальная толщина стенки трубопровода, мм;

s х - суммарные продольные напряжения, Н/мм 2 ;

s y - суммарные кольцевые напряжения, Н/мм 2 ;

t ху - тангенциальные срезающие напряжения, Н/мм 2 ;

К - расчетный коэффициент надежности, принимаемый по ;

s т - минимальное значение предела текучести металла труб, принимаемое по государственным стандартам и техническим условиям на стальные трубы, Н/мм 2 ;

Р - расчетное внутреннее давление в трубопроводе, Н/мм 2 ;

Ро - наружное гидростатическое давление, Н/мм 2 ;

Рx - сила лобового сопротивления, Н/м;

Рz -подъемная сила, Н/м;

Ри - инерционная сила, Н/м;

G - вес трубопровода в воде (отрицательная плавучесть), Н/м;

m - коэффициент надежности, принимаемый равным 1,1;

f - коэффициент трения;

Рс - расчетное наружное гидростатическое давление на трубопровод с учетом овальности трубы, Н/мм 2 ;

Рсг - критическое наружное давление для круглой трубы, Н/мм 2 ;

Ру - наружное давление на трубопровод, вызывающее текучесть материала

труб, Н/мм 2 ;

Рр - наружное гидростатическое давление, при котором произойдет распространение возникшего ранее смятия трубы, Н/мм 2 ;

e о - допустимая деформация изгиба для трубопровода;

e с - критическая деформация изгиба, вызывающая смятие в результате чистого изгиба трубы;

u - коэффициент Пуассона;

Е - модуль Юнга для материала труб, Н/мм 2 ;

Н - критическая глубина воды, м;

g - ускорение силы тяжести, м/с 2 ;

r - плотность морской воды, кг/м 3 ;

U - овальность трубопровода;

R - допустимый радиус кривизны трубопровода при укладке на больших глубинах моря, м.

Технические термины и определения

Морской газопровод - горизонтальная часть трубопроводной системы, расположенная ниже уровня воды, включающая сам трубопровод, устройства электрохимической защиты на нем и другие устройства, обеспечивающие транспортирование газообразных углеводородов при заданном технологическом режиме.

Охранная зона прибрежных участков газопровода - участки магистрального газопровода от береговых компрессорных станций до уреза воды и далее по дну моря, на расстояние не менее 500 м.

Трубные элементы - детали в конструкции трубопровода, такие как фланцы, тройники, колена, переходники и запорная арматура.

Утяжеляющее покрытие - покрытие, наносимое на трубопровод с целью обеспечения ему отрицательной плавучести и защиты от механических повреждений.

Отрицательная плавучесть трубопровода - сила, направленная вниз, равная весу конструкции трубопровода на воздухе за вычетом веса воды, вытесненной в объеме погруженного в нее трубопровода.

Минимальный предел текучести - минимальный предел текучести, указанный в сертификате или стандарте, по которому поставляются трубы.

При расчетах принимается, что при минимальном пределе текучести суммарное удлинение не превышает 0,2 %.

Расчетное давление - давление, принятое как постоянно действующее максимальное давление, оказываемое транспортируемой средой на трубопровод в процессе его эксплуатации и на которое рассчитана трубопроводная система.

Всплеск давления - случайное давление, вызываемое сбоем установившегося режима потока в трубопроводной системе, не должно превышать расчетное давление более чем на 10 %.

Давление избыточное - разность двух абсолютных давлений, наружного гидростатического и внутреннего.

Испытательное давление - нормированное давление, при котором производится испытание трубопровода перед сдачей его в эксплуатацию.

Испытание на герметичность - гидравлическое испытание давлением, устанавливающее отсутствие утечки транспортируемого продукта.

Испытание на прочность - гидравлическое испытание давлением, устанавливающее конструктивную прочность трубопровода.

Номинальный диаметр трубы - наружный диаметр трубы, указанный в стандарте, по которому поставляются трубы.

Номинальная толщина стенки - толщина стенки трубы, указанная в стандарте, по которому поставляются трубы.

Надежность морского трубопровода - способность трубопровода непрерывно транспортировать продукт в соответствии с установленными проектом параметрами (давление, расход и другие) в течение заданного срока эксплуатации при установленном режиме контроля и технического обслуживания.

Допускаемые напряжения - максимальные суммарные напряжения в трубопроводе (продольные, кольцевые и тангенциальные), допускаемые нормами.

Заглубление трубопровода - положение трубопровода ниже естественного уровня грунта морского дна.

Величина заглубления - разница между уровнями расположения верхней образующей трубопровода и естественным уровнем грунта морского дна.

Длина провисающего участка трубопровода - длина трубопровода, не соприкасающегося с морским дном или с опорными устройствами.

Прокладка морского трубопровода - комплекс технологических процессов по изготовлению, укладке и заглублению морского трубопровода.

Приложение 3.
Рекомендуемое.

Нормативные документы, использованные при
разработке настоящих норм и правил:

1. СНиП 10-01-94. "Система нормативных документов в строительстве. Основные положения" / Минстрой России. М.: ГП ЦПП, 1994 г.

2. СНиП 2.05.06-85 *. " Магистральные трубопроводы" / Госстрой. М.:ЦИТП Госстроя, 1997 г.

3. СНиП III-42-80 *. " Правила производства и приемки работ. Магистральные трубопроводы" /Госстрой. М.: Стройиздат, 1997 г.

4. СНиП 2.06.04-82*. "Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов)" / Госстрой. М.: ЦИТП Госстроя, 1995 г.

5. "Правила безопасности при разведке и разработке нефтяных и газовых месторождений на континентальном шельфе СССР", М.: "Недра", 1990г.;

6. "Правила техники безопасности при строительстве магистральных трубопроводов". М.: "Недра", 1982 г.;

7. "Правила технической эксплуатации магистральных газопроводов", М.:"Недра", 1989 г.;

8. Стандарт США "Проектирование, строительство, эксплуатация и ремонт морских трубопроводов для углеводородов", АР I - 1111. Практические рекомендации.1993.

9. Стандарт Норвегии "Det Norske Veritas" (DNV) "Правила для подводных трубопроводных систем", 1996 г.

10. Британский стандарт S 8010. "Практическое руководство для проектирования, строительства и укладки трубопроводов. Подводные трубопроводы". Части 1, 2 и 3, 1993 г.

11. АРI 5 L. "Спецификация США для стальных труб". 1995 г.

12. АРI 6 D. "Спецификация США для трубопроводной арматуры (клапаны, заглушки и контрольные задвижки)". 1995 г.

13. Стандарт США АSМЕ В 31.8. "Нормативы по транспортировке газа и распределительным трубопроводным системам", 1996 г.

14. Стандарт США МSS -SР - 44. "Стальные фланцы для трубопроводов", 1990г.

15. Международный стандарт ISO 9000 "Управление качеством и гарантии качества", 1996 г.

= Пост подготовлен в интересах ГК Стройгазмонтаж =

Мы - поколение, которое родилось в век технологического прорыва, и часто даже не представляем, что стоит за достижениями цивилизации. Конечно, в общих чертах каждый знает, что вода идёт по трубам в земле, сигнал GPS поступает со спутника в космосе, а электричество вырабатывают гигантские станции. Но пониманием ли мы чего стоило создать всё это?

Ранее, я , и . Сейчас же речь пойдет о необычном объекте, который был построен компанией Ротенбергов. Мы знаем, что к играм в Сочи возводили не только спортивные сооружения, но и элементы инфраструктуры. Зачастую строили с нуля и впервые: не зря фильм об одном из самых сложных и впечатляющих инфраструктурных объектов называется "Никто и никогда ". Речь идёт о газопроводе "Джубга - Лазаревское - Сочи". Уникальность его в том, что 90% магистральной трассы (а это более 150 км) проходит по дну Черного моря вдоль прибрежной полосы на глубине до 80 метров. Такое решение позволило избежать каких-либо влияний строительства на Черноморское побережье.

Как я уже сказал, основная часть газопровода проходит по дну Черного моря на расстоянии пяти километров от берега. В самом начале, конце и нескольких участках по пути трасса выходит наружу и соединяется с газораспределительными пунктами. На этих участках газ направляется по различным маршрутам к потребителю. А приходит он, в свою очередь из Ямала по другим магистральным трассам. Другими словами, прежде чем оказаться в Сочи, газ проходит тысячи километров с севера на юг:

Газораспределительный пункт (ГРП) "Кудепста" находится на вершине горы. С моря в сушу "врезается" магистральная труба и поднимается наверх. По словам строителей, для создания этого участка использовали метод наклонного бурения. Прокладывать трассу обычным траншейным методом не стали, чтобы, опять же, не наносить вреда окружающей среде:

4.

Однако самое интересное то как строили основную магистраль. Все работы происходили в море. Огромные трубы диаметром в полметра из сверхпрочного сплава усиливали слоем бетона, варили прямо на корабле, а затем опускали в море:

Перед тем, как прокладывать газопровод, подводники прошлись по пути следования трубы и обнаружили два минных поля, оставшихся после второй мировой войны:

Самый сложный процесс строительства заключался в стыковке двух труб - основной "нитки", которая шла по морю и сухопутного участка. Стыковка так же происходила в море и заняла три дня. Это потребовало слаженной работы всей команды, которая работала на строительстве газопровода:

Сегодня результат их работы скрыт 80 метрами воды, а об этом уникальном опыте напоминает новый газораспределительный пункт в Кудепсте, который увеличил газовые мощности всего сочинского района и окрестностей.

Надо сказать, что до строительства нового газопровода в Сочи уже был газ. При этом доля газификации района не превышала трех процентов. Это катастрофически мало для жизни и, конечно же, не обеспечило бы необходимых для проведения Олимпиады мощностей. Кроме того, в случае аварий или сбоев, всё побережье осталось бы без топлива (достаточно вспомнить историю с блекаутом в Крыму).

Давайте взглянем на ГРП и разберемся как она устроена. Прежде чем туда попасть, необходимо пройти пункт досмотра и проверки. Будучи важнейшей инфраструктурной точкой, ГРП охраняется круглые сутки несколькими вооруженными людьми:

8.

Проход внутрь возможен только в сопровождении начальника участка и по согласованию с высшим руководством:

9.

Вдоль всего периметра стоят камеры с датчиками движения:

10.

Итак, ГРП - это точка распределения газа с основной магистральной трубы. Здесь понижается давление и газ уходит на небольшие газораспределительные станции, которые, в свою очередь, отправляют его конечным потребителям:

11.

Начальник участка рассказывает, что это - одна из нескольких частей многокилометровой километровой трубы, которая выходит наружу:

12.

13.

Кажется, на участке "пахнет газом", но это не так. В воздухе чувствуется запах одоранта - специального состава, который добавляют в газ, чтобы он приобрел запах (сам по себе газ не имеет ни цвета, ни запаха):

14.

Емкость одоранта:

15.

16.

После того как давление газа снизилось и ему добавили "запах", он расползается на несколько веток.

17.

Рядом со ГРП работники высаживают фруктовые деревья:

18.

В общей сложности Кудепский пункт отправляет топливо на 11 станций. Тут важно пояснить, что газопровод соединяется с уже существующей Майкопской ниткой. В этом есть свой смысл: если раньше на каком-то участке происходила авария или профилактическая работа, без газа оставались все следующе пункты. А сейчас газ может циркулировать в двух направлениях, обеспечивая бесперебойную работу всего Сочинского района:

19.

20.

Важнейшим получателем газа является Адлерская ТЭС, о которой я